Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Brian Greene
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Academic career== Greene joined the physics faculty of [[Cornell University]] in 1990, received tenure in 1993, and was appointed to a full professorship in 1995.<ref>{{Cite web |date=2020-04-08 |title=Brian Greene |url=https://www.ttbook.org/people/brian-greene |access-date=2025-01-22 |website=To The Best Of Our Knowledge}}</ref> The following year, he joined the faculty of [[Columbia University]] as a full professor.<ref name=":3">{{Cite web |date=2025-01-04 |title=Brian Greene {{!}} Biography, Books, & Facts {{!}} Britannica |url=https://www.britannica.com/biography/Brian-Greene |access-date=2025-01-22 |website=www.britannica.com |language=en}}</ref> At Columbia, Greene is director of the university’s center for theoretical physics and is leading a research program at the intersection of string theory, mathematical physics, and cosmology.<ref>{{Cite web |last=admin |title=Physics Research |url=https://www.briangreene.org/physics-research/ |access-date=2025-01-22 |website=Brian Greene |language=en-US}}</ref> ===Research=== Greene's area of research is [[string theory]], a candidate for a theory of [[quantum gravity]]. He is known for his contribution to the understanding of the different shapes the curled-up [[dimension]]s of string theory can take. The most important of these shapes are so-called [[Calabi–Yau]] manifolds; when the extra dimensions take on those particular forms, physics in three dimensions exhibits an abstract symmetry known as [[supersymmetry]].<ref>{{Cite journal |last=Candelas |first=P. |last2=Horowitz |first2=Gary T. |last3=Strominger |first3=Andrew |last4=Witten |first4=Edward |date=1985-01-01 |title=Vacuum configurations for superstrings |url=https://linkinghub.elsevier.com/retrieve/pii/0550321385906029 |journal=Nuclear Physics B |volume=258 |pages=46–74 |doi=10.1016/0550-3213(85)90602-9 |issn=0550-3213|url-access=subscription }}</ref> Greene co-discovered a particular class of symmetry relating two different [[Calabi–Yau manifolds]], known as [[mirror symmetry (string theory)|mirror symmetry]]<ref>{{Cite journal |last=Greene |first=B. R. |last2=Plesser |first2=M. R. |date=1990-07-02 |title=Duality in Calabi-Yau moduli space |url=https://linkinghub.elsevier.com/retrieve/pii/055032139090622K |journal=Nuclear Physics B |volume=338 |issue=1 |pages=15–37 |doi=10.1016/0550-3213(90)90622-K |issn=0550-3213|url-access=subscription }}</ref> and is known for his research on the [[flop-transition]],<ref>{{Cite journal |last=Aspinwall |first=Paul S. |last2=Greene |first2=Brian R. |last3=Morrison |first3=David R. |date=1993-04-15 |title=Multiple mirror manifolds and topology change in string theory |url=https://linkinghub.elsevier.com/retrieve/pii/037026939391428P |journal=Physics Letters B |volume=303 |issue=3 |pages=249–259 |doi=10.1016/0370-2693(93)91428-P |issn=0370-2693|arxiv=hep-th/9301043 }}</ref><ref>{{Cite journal |last=Aspinwall |first=Paul S. |last2=Greene |first2=Brian R. |last3=Morrison |first3=David R. |date=1994-03-28 |title=Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory |url=https://linkinghub.elsevier.com/retrieve/pii/0550321394903212 |journal=Nuclear Physics B |volume=416 |issue=2 |pages=414–480 |doi=10.1016/0550-3213(94)90321-2 |issn=0550-3213|arxiv=hep-th/9309097 }}</ref> a mild form of [[topology]] change, and also the conifold transition,<ref name=":0">{{Cite journal |last=Greene |first=Brian R. |last2=Morrison |first2=David R. |last3=Strominger |first3=Andrew |date=1995-09-25 |title=Black hole condensation and the unification of string vacua |url=https://linkinghub.elsevier.com/retrieve/pii/055032139500371X |journal=Nuclear Physics B |volume=451 |issue=1 |pages=109–120 |doi=10.1016/0550-3213(95)00371-X |issn=0550-3213|arxiv=hep-th/9504145 }}</ref> a more severe transformation of space, showing that topology in string theory can change smoothly.<ref>{{Cite book |title=Symétries quantiques =: Quantum symmetries: Les Houches, session LXIV, 1 Août - 8 Septembre 1995 |date=1998 |publisher=Elsevier Science |isbn=978-0-444-82867-5 |editor-last=Connes |editor-first=Alain |location=Amsterdam ; New York |pages=387–471 |editor-last2=Gawędzki |editor-first2=K. |editor-last3=Zinn-Justin |editor-first3=Jean}}</ref> Greene has also studied [[string cosmology]], especially the imprints of [[Trans-Planckian problem|trans-Planckian]] physics on the [[cosmic microwave background]],<ref>{{Cite journal |last=Easther |first=Richard |last2=Greene |first2=Brian R. |last3=Kinney |first3=William H. |last4=Shiu |first4=Gary |date=2002-07-22 |title=Generic estimate of trans-Planckian modifications to the primordial power spectrum in inflation |url=https://journals.aps.org/prd/abstract/10.1103/PhysRevD.66.023518 |journal=Physical Review D |volume=66 |issue=2 |pages=023518 |doi=10.1103/PhysRevD.66.023518|arxiv=hep-th/0204129 }}</ref> and [[Membrane (M-theory)|brane]]-gas cosmologies that could explain why the space around us has three large [[dimension]]s.<ref>{{Cite journal |last=Greene |first=Brian |last2=Kabat |first2=Daniel |last3=Marnerides |first3=Stefanos |date=2010-08-25 |title=Dynamical decompactification and three large dimensions |url=https://journals.aps.org/prd/abstract/10.1103/PhysRevD.82.043528 |journal=Physical Review D |volume=82 |issue=4 |pages=043528 |doi=10.1103/PhysRevD.82.043528|arxiv=0908.0955 }}</ref> His work has expanded on the suggestion of a [[black hole electron]], namely that a [[black hole]] can continuously transform into a [[particle]] such as an [[electron]].<ref name=":0" /> Currently, Greene is studying non-[[Simply connected space|simply connected]] and non-[[Orientability|orientable]] [[Compactification (mathematics)|compactifications]] and has showed that in some of these contexts, signals can have an effective speed [[Faster-than-light|greater than that of light]], and even [[Time travel|travel back in time]].<ref>{{Cite journal |last=Greene |first=Brian |last2=Kabat |first2=Daniel |last3=Levin |first3=Janna |last4=Porrati |first4=Massimo |date=2023-01-27 |title=Back to the future: Causality on a moving braneworld |url=https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.025016 |journal=Physical Review D |volume=107 |issue=2 |pages=025016 |doi=10.1103/PhysRevD.107.025016|arxiv=2208.09014 }}</ref><ref>{{Cite journal |last=Greene |first=Brian |last2=Kabat |first2=Daniel |last3=Levin |first3=Janna |last4=Menon |first4=Arjun S. |date=2022-10-10 |title=Superluminal propagation on a moving braneworld |url=https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.085001 |journal=Physical Review D |volume=106 |issue=8 |pages=085001 |doi=10.1103/PhysRevD.106.085001|arxiv=2206.13590 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)