Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Broadband over power lines
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==How BPL works== Broadband Over Power Lines (BPL) works as specialized modems to convert data into signals and transmit alongside power lines, This process ensures consistent broadband connectivity through demodulation, data distribution, and interference mitigation.<ref name=":1" /> # '''Modulation''': BPL technology utilizes specific modems to transform digital data into signals that are suitable for power line transmission. Various modulation techniques, such as frequency division multiplexing (FDM) or orthogonal frequency division multiplexing (OFDM), are employed. These techniques allow the combination of data signals with the power signals on the electrical lines. # '''Injection''': After modulating the digital data, BPL modems inject the signals to the power lines at substations or distribution points. These data signals merge with the pre-existing alternating current (AC) power signals, leveraging the existing infrastructure without the need for extra cables. # '''Signal Propagation''': The injected BPL signals propagate through the power lines, utilizing them as transmission mediums. These signals travel along the electrical wiring, making their way to the destination points, such as homes or businesses. The power lines act as conduits for the BPL signals to reach their intended receivers. # '''Reception''': At the consumer end, BPL modems receive the signals from the power lines. These modems are typically connected to routers or networking devices, allowing the distribution of the internet connection to multiple devices within the premises. The BPL modems serve as the interface between the power lines and the local area network (LAN). # '''Demodulation''': The BPL modems demodulate the received signals, separating the data packets from the power signals. This process involves extracting the original digital data from the modulated carrier signals. Demodulation allows the recovery of the transmitted information for further processing. # '''Data Distribution''': Once demodulated, the data packets are forwarded to the connected routers or networking devices. These devices handle the distribution of the internet connection to various devices within the premises, such as computers, smartphones, or smart home devices. The router or networking devices act as gateways for data transmission and reception. # '''Repeaters and Amplifiers''': In larger BPL deployments, repeaters or amplifiers may be installed along the power lines to boost the signal strength and extend coverage. These devices ensure that the BPL signals maintain sufficient quality and reach distant locations. Repeaters receive and regenerate the BPL signals, enabling their propagation over longer distances without significant degradation. # '''Interference Mitigation''': BPL systems need incorporate measures to manage interference for consistent data transmission. Specific filtering methods are utilized to address radio frequency interference (RFI) associated with BPL signals. These filters aim to limit BPL's influence on adjacent radio communications. Compliance with established regulations and industry norms ensures proper interference mitigation measures. # '''Quality and Reliability''': BPL system performance is influenced by several elements. These include the condition of the electrical wiring, proximity to BPL equipment, and potential signal interference. Maintaining high-quality wiring and a suitable signal-to-noise ratio is crucial for effective BPL functioning.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)