Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bump function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Existence of bump functions== [[Image:Venn diagram of three sets.svg|thumb|An illustration of the sets in the construction.|100x100px]] It is possible to construct bump functions "to specifications". Stated formally, if <math>K</math> is an arbitrary [[compact set]] in <math>n</math> dimensions and <math>U</math> is an [[open set]] containing <math>K,</math> there exists a bump function <math>\phi</math> which is <math>1</math> on <math>K</math> and <math>0</math> outside of <math>U.</math> Since <math>U</math> can be taken to be a very small neighborhood of <math>K,</math> this amounts to being able to construct a function that is <math>1</math> on <math>K</math> and falls off rapidly to <math>0</math> outside of <math>K,</math> while still being smooth. '''Bump functions defined in terms of convolution''' The construction proceeds as follows. One considers a compact neighborhood <math>V</math> of <math>K</math> contained in <math>U,</math> so <math>K \subseteq V^\circ\subseteq V \subseteq U.</math> The [[indicator function|characteristic function]] <math>\chi_V</math> of <math>V</math> will be equal to <math>1</math> on <math>V</math> and <math>0</math> outside of <math>V,</math> so in particular, it will be <math>1</math> on <math>K</math> and <math>0</math> outside of <math>U.</math> This function is not smooth however. The key idea is to smooth <math>\chi_V</math> a bit, by taking the [[convolution]] of <math>\chi_V</math> with a [[mollifier]]. The latter is just a bump function with a very small support and whose integral is <math>1.</math> Such a mollifier can be obtained, for example, by taking the bump function <math>\Phi</math> from the previous section and performing appropriate scalings. '''Bump functions defined in terms of a function <math>c : \Reals \to [0, \infty)</math> with support <math>(-\infty, 0]</math>''' An alternative construction that does not involve convolution is now detailed. It begins by constructing a smooth function <math>f : \Reals^n \to \Reals</math> that is positive on a given open subset <math>U \subseteq \Reals^n</math> and vanishes off of <math>U.</math>{{sfn|Nestruev|2020|pp=13-16}} This function's support is equal to the closure <math>\overline{U}</math> of <math>U</math> in <math>\Reals^n,</math> so if <math>\overline{U}</math> is compact, then <math>f</math> is a bump function. Start with any smooth function <math>c : \Reals \to \Reals</math> that vanishes on the negative reals and is positive on the positive reals (that is, <math>c = 0</math> on <math>(-\infty, 0)</math> and <math>c > 0</math> on <math>(0, \infty),</math> where continuity from the left necessitates <math>c(0) = 0</math>); an example of such a function is <math>c(x) := e^{-1/x}</math> for <math>x > 0</math> and <math>c(x) := 0</math> otherwise.{{sfn|Nestruev|2020|pp=13-16}} Fix an open subset <math>U</math> of <math>\Reals^n</math> and denote the usual [[Euclidean norm]] by <math>\|\cdot\|</math> (so <math>\Reals^n</math> is endowed with the usual [[Euclidean metric]]). The following construction defines a smooth function <math>f : \Reals^n \to \Reals</math> that is positive on <math>U</math> and vanishes outside of <math>U.</math>{{sfn|Nestruev|2020|pp=13-16}} So in particular, if <math>U</math> is relatively compact then this function <math>f</math> will be a bump function. If <math>U = \Reals^n</math> then let <math>f = 1</math> while if <math>U = \varnothing</math> then let <math>f = 0</math>; so assume <math>U</math> is neither of these. Let <math>\left(U_k\right)_{k=1}^\infty</math> be an [[Cover (topology)|open cover]] of <math>U</math> by open balls where the open ball <math>U_k</math> has radius <math>r_k > 0</math> and center <math>a_k \in U.</math> Then the map <math>f_k : \Reals^n \to \Reals</math> defined by <math>f_k(x) = c\left(r_k^2 - \left\|x - a_k\right\|^2\right)</math> is a smooth function that is positive on <math>U_k</math> and vanishes off of <math>U_k.</math>{{sfn|Nestruev|2020|pp=13-16}} For every <math>k \in \mathbb{N},</math> let <math display="block">M_k = \sup \left\{\left|\frac{\partial^p f_k}{\partial^{p_1} x_1 \cdots \partial^{p_n} x_n}(x)\right| ~:~ x \in \Reals^n \text{ and } p_1, \ldots, p_n \in \Z \text{ satisfy } 0 \leq p_i \leq k \text{ and } p = \sum_i p_i\right\},</math> where this [[supremum]] is not equal to <math>+\infty</math> (so <math>M_k</math> is a non-negative real number) because <math>\left(\Reals^n \setminus U_k\right) \cup \overline{U_k} = \Reals^n,</math> the partial derivatives all vanish (equal <math>0</math>) at any <math>x</math> outside of <math>U_k,</math> while on the compact set <math>\overline{U_k},</math> the values of each of the (finitely many) partial derivatives are (uniformly) bounded above by some non-negative real number.<ref group="note">The partial derivatives <math>\frac{\partial^p f_k}{\partial^{p_1} x_1 \cdots \partial^{p_n} x_n} : \Reals^n \to \Reals</math> are continuous functions so the image of the compact subset <math>\overline{U_k}</math> is a compact subset of <math>\Reals.</math> The supremum is over all non-negative integers <math>0 \leq p = p_1 + \cdots + p_n \leq k</math> where because <math>k</math> and <math>n</math> are fixed, this supremum is taken over only finitely many partial derivatives, which is why <math>M_k < \infty.</math></ref> The series <math display="block">f ~:=~ \sum_{k=1}^{\infty} \frac{f_k}{2^k M_k}</math> converges uniformly on <math>\Reals^n</math> to a smooth function <math>f : \Reals^n \to \Reals</math> that is positive on <math>U</math> and vanishes off of <math>U.</math>{{sfn|Nestruev|2020|pp=13-16}} Moreover, for any non-negative integers <math>p_1, \ldots, p_n \in \Z,</math>{{sfn|Nestruev|2020|pp=13-16}} <math display="block">\frac{\partial^{p_1+\cdots+p_n}}{\partial^{p_1} x_1 \cdots \partial^{p_n} x_n} f ~=~ \sum_{k=1}^{\infty} \frac{1}{2^k M_k} \frac{\partial^{p_1+\cdots+p_n} f_k}{\partial^{p_1} x_1 \cdots \partial^{p_n} x_n}</math> where this series also converges uniformly on <math>\Reals^n</math> (because whenever <math>k \geq p_1 + \cdots + p_n</math> then the <math>k</math><sup>th</sup> term's absolute value is <math>\leq \tfrac{M_k}{2^k M_k} = \tfrac{1}{2^k}</math>). This completes the construction. As a corollary, given two disjoint closed subsets <math>A, B</math> of <math>\Reals^n,</math> the above construction guarantees the existence of smooth non-negative functions <math>f_A, f_B : \Reals^n \to [0, \infty)</math> such that for any <math>x \in \Reals^n,</math> <math>f_A(x) = 0</math> if and only if <math>x \in A,</math> and similarly, <math>f_B(x) = 0</math> if and only if <math>x \in B,</math> then the function <math display="block">h ~:=~ \frac{f_A}{f_A + f_B} : \Reals^n \to [0, 1]</math> is smooth and for any <math>x \in \Reals^n,</math> <math>h(x) = 0</math> if and only if <math>x \in A,</math> <math>h(x) = 1</math> if and only if <math>x \in B,</math> and <math>0 < h(x) < 1</math> if and only if <math>x \not\in A \cup B.</math>{{sfn|Nestruev|2020|pp=13-16}} In particular, <math>h(x) \neq 0</math> if and only if <math>x \in \Reals^n \smallsetminus A,</math> so if in addition <math>U := \Reals^n \smallsetminus A</math> is relatively compact in <math>\Reals^n</math> (where <math>A \cap B = \varnothing</math> implies <math>B \subseteq U</math>) then <math>h</math> will be a smooth bump function with support in <math>\overline{U}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)