Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cabibbo–Kobayashi–Maskawa matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Predecessor – the Cabibbo matrix=== [[Image:Cabibbo angle.svg|thumb|270px|right|The Cabibbo angle represents the rotation of the mass eigenstate vector space formed by the mass eigenstates <math> | d \rangle , \,| s \rangle </math> into the weak eigenstate vector space formed by the weak eigenstates <math> | d' \rangle \,, ~ | \, s' \rangle ~.</math> {{nowrap|{{mvar|θ}}{{sub|c}} {{=}} 13.02° .}} ]] In 1963, [[Nicola Cabibbo]] introduced the '''Cabibbo angle''' ({{mvar|θ}}{{sub|c}}) to preserve the universality of the [[weak interaction]].<ref name="Cabibbo"> {{cite journal |first=N. |last=Cabibbo |year=1963 |title=Unitary Symmetry and Leptonic Decays |journal=[[Physical Review Letters]] |volume=10 |issue=12 |pages=531–533 |doi=10.1103/PhysRevLett.10.531 |doi-access=free |bibcode=1963PhRvL..10..531C }} </ref> Cabibbo was inspired by previous work by [[Murray Gell-Mann]] and Maurice Lévy,<ref> {{cite journal |first1=M. |last1=Gell-Mann |author1-link=Murray Gell-Mann |first2=M. |last2=Lévy |year=1960 |title= The Axial Vector Current in Beta Decay |journal=[[Il Nuovo Cimento]] |volume=16 |issue=4 |pages=705–726 |doi=10.1007/BF02859738 |bibcode=1960NCim...16..705G |s2cid=122945049 }} </ref> on the effectively rotated nonstrange and strange vector and axial weak currents, which he references.<ref> {{cite journal |first=L. |last=Maiani |year=2009 |title=Sul premio Nobel per la fisica 2008 |trans-title=On the Nobel prize in Physics for 2008 |journal=Il Nuovo Saggiatore |volume=25 |issue=1–2 |pages=78 |url=http://prometeo.sif.it:8080/papers/online/sag/025/01-02/pdf/78_opinioni.pdf |url-status=dead |access-date=30 November 2010 |archive-url=https://web.archive.org/web/20110722053046/http://prometeo.sif.it:8080/papers/online/sag/025/01-02/pdf/78_opinioni.pdf |archive-date=22 July 2011 |df=dmy-all }} </ref> In light of current concepts (quarks had not yet been proposed), the Cabibbo angle is related to the relative probability that [[down quark|down]] and [[strange quark]]s decay into [[up quark]]s ( |{{mvar|V}}{{sub|ud}}|{{sup|2}} and |{{mvar|V}}{{sub|us}}|{{sup|2}} , respectively). In particle physics terminology, the object that couples to the up quark via charged-current weak interaction is a superposition of down-type quarks, here denoted by {{mvar|d′}}.<ref name="Hughes"> {{cite book |first=I.S. |last=Hughes |year=1991 |chapter=Chapter 11.1 – Cabibbo Mixing |title=Elementary Particles |edition=3rd |pages=242–243 |publisher=[[Cambridge University Press]] |isbn=978-0-521-40402-0 |chapter-url=https://books.google.com/books?id=JN6qlZlGUG4C&q=cabbibo+angle&pg=PA242 }} </ref> Mathematically this is: :<math> d' = V_\mathrm{ud} \; d ~~ + ~~ V_\mathrm{us} \; s ~,</math> or using the Cabibbo angle: :<math> d' = \cos \theta_\mathrm{c} \; d ~~ + ~~ \sin \theta_\mathrm{c} \; s ~.</math> Using the currently accepted values for |{{mvar|V}}{{sub|ud}}| and |{{mvar|V}}{{sub|us}}| (see below), the Cabibbo angle can be calculated using :<math> \tan\theta_\mathrm{c} = \frac{\, |V_\mathrm{us}| \,}{|V_\mathrm{ud}|} = \frac{0.22534}{0.97427} \quad \Rightarrow \quad \theta_\mathrm{c}= ~13.02^\circ ~.</math> When the [[charm quark]] was discovered in 1974, it was noticed that the down and strange quark could transition into either the up or charm quark, leading to two sets of equations: :<math> d' = V_\mathrm{ud} \; d ~~ + ~~ V_\mathrm{us} \; s ~,</math> :<math> s' = V_\mathrm{cd} \; d ~~ + ~~ V_\mathrm{cs} \; s ~;</math> or using the Cabibbo angle: :<math> d' = ~~~ \cos{\theta_\mathrm{c}} \; d ~~+~~ \sin{\theta_\mathrm{c}} \; s ~,</math> :<math> s' = - \sin{\theta_\mathrm{c}} \; d ~~+~~ \cos{\theta_\mathrm{c}} \; s ~.</math> This can also be written in [[matrix (mathematics)|matrix notation]] as: :<math> \begin{bmatrix} d' \\ s' \end{bmatrix} = \begin{bmatrix} V_\mathrm{ud} & V_\mathrm{us} \\ V_{cd} & V_{cs} \\ \end{bmatrix} \begin{bmatrix} d \\ s \end{bmatrix} ~, </math> or using the Cabibbo angle :<math> \begin{bmatrix} d' \\ s' \end{bmatrix} = \begin{bmatrix} ~~\cos{ \theta_\mathrm{c} } & \sin{ \theta_\mathrm{c} } \\ -\sin{\theta_\mathrm{c}} & \cos{\theta_\mathrm{c}}\\ \end{bmatrix} \begin{bmatrix} d \\ s \end{bmatrix}~, </math> where the various |{{mvar|V{{sub|ij}}}}|{{sup|2}} represent the probability that the quark of flavor {{mvar|j}} decays into a quark of flavor {{mvar|i}}. This 2×2 [[rotation matrix]] is called the "Cabibbo matrix", and was subsequently expanded to the 3×3 CKM matrix. [[Image:Quark weak interactions.svg|thumb|270px|right|A pictorial representation of the six quarks' decay modes, with mass increasing from left to right.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)