Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== According to [[Oxford English Dictionary|OED]] and [[LSJ]], the term ''[[canonical]]'' stems from the [[Ancient Greek]] word ''kanonikós'' (''[[wikt:κανονικός|κανονικός]]'', "regular, according to rule") from ''kanṓn'' (''[[wikt:κανών#Ancient_Greek|κᾰνών]]'', "rod, rule"). The sense of [[wikt:norm|norm]], [[wikt:standard|standard]], or [[archetypal|archetype]] has been used in many disciplines. Mathematical usage is attested in a 1738 letter from [[James Logan (statesman)|Logan]].<ref>{{cite book |title=Letter from James Logan to William Jones, Correspondence of Scientific Men of the Seventeenth Century |url=https://books.google.com/books?id=65lEAAAAcAAJ&pg=PA331 |publisher=University Press |language=en |date=1841| isbn=978-1-02-008678-6 }}</ref> The German term ''kanonische Form'' is attested in a 1846 paper by [[Gotthold Eisenstein|Eisenstein]],<ref>{{cite web |title=Journal für die reine und angewandte Mathematik 1846 |url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0032?tify={%22pages%22:[63],%22panX%22:0.513,%22panY%22:0.37,%22view%22:%22info%22,%22zoom%22:0.982} |publisher=de Gruyter}}</ref> later the same year [[Friedrich Julius Richelot|Richelot]] uses the term ''Normalform'' in a paper,<ref>{{cite book |title=Journal für die reine und angewandte Mathematik 1846 |url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0032?tify=%7B%22pages%22:%5B227%5D%7D |publisher=de Gruyter}}</ref> and in 1851 [[James Joseph Sylvester|Sylvester]] writes:<ref>{{cite web |title=The Cambridge and Dublin mathematical journal 1851 |url=https://gdz.sub.uni-goettingen.de/id/PPN600493962_0006?tify={%22pages%22:[197],%22panX%22:0.562,%22panY%22:0.626,%22view%22:%22toc%22,%22zoom%22:0.878} |publisher=Macmillan}}</ref> {{quote|"I now proceed to [...] the mode of reducing Algebraical Functions to their simplest and most symmetrical, or as my admirable friend [[Charles Hermite|M. Hermite]] well proposes to call them, their ''Canonical forms''."}} In the same period, usage is attested by [[Otto Hesse|Hesse]] ("Normalform"),<ref>{{cite web |last1=Hesse |first1=Otto |title=Vorlesungen aus der analytischen Geometrie der geraden Linie, des Punktes und des Kreises in der Ebene |url=https://archive.org/details/bub_gb_at6qA3g2YDwC/page/n25 |publisher=Teubner |language=German |date=1865}}</ref> [[Charles Hermite|Hermite]] ("forme canonique"),<ref>{{cite web |title=The Cambridge and Dublin mathematical journal 1854 |url=https://books.google.com/books?id=p59EAAAAcAAJ&dq=%22forme+canonique%22&pg=PA181 |language=en |date=1854}}</ref> [[Carl Wilhelm Borchardt|Borchardt]] ("forme canonique"),<ref>{{cite web |title=Journal für die reine und angewandte Mathematik, 1854 |url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0048?tify={%22pages%22:[80],%22panX%22:0.54,%22panY%22:0.407,%22view%22:%22info%22,%22zoom%22:0.818} |publisher=de Gruyter}}</ref> and [[Arthur Cayley|Cayley]] ("canonical form").<ref>{{cite book |last1=Cayley |first1=Arthur |title=The Collected Mathematical Papers |url=https://books.google.com/books?id=TT1eAAAAcAAJ&dq=inauthor%3Acayley+%22canonical+form%22&pg=PA558 |publisher=University |language=en |date=1889|isbn=978-1-4181-8586-2 }}</ref> In 1865, the [[Dictionary of Science, Literature and Art]] defines canonical form as: {{quote|"In Mathematics, denotes a form, usually the simplest or most symmetrical, to which, without loss of generality, all functions of the same class can be reduced."}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)