Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cantor function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== The Cantor function challenges naive intuitions about [[continuous function|continuity]] and [[measure (mathematics)|measure]]; though it is continuous everywhere and has zero derivative [[almost everywhere]], <math display="inline">c(x)</math> goes from 0 to 1 as <math display="inline>x</math> goes from 0 to 1, and takes on every value in between. The Cantor function is the most frequently cited example of a real function that is [[uniformly continuous]] (precisely, it is [[Hölder continuous]] of exponent <math>\alpha = \log_3(2)</math>) but not [[absolute continuity|absolutely continuous]]. It is constant on intervals of the form (0.''x''<sub>1</sub>''x''<sub>2</sub>''x''<sub>3</sub>...''x''<sub>n</sub>022222..., 0.''x''<sub>1</sub>''x''<sub>2</sub>''x''<sub>3</sub>...''x''<sub>n</sub>200000...), and every point not in the Cantor set is in one of these intervals, so its derivative is 0 outside of the Cantor set. On the other hand, it has no [[derivative]] at any point in an [[uncountable]] subset of the [[Cantor set]] containing the interval endpoints described above. The Cantor function can also be seen as the [[cumulative distribution function|cumulative probability distribution function]] of the 1/2-1/2 [[Bernoulli measure]] ''μ'' supported on the Cantor set: <math display="inline">c(x)=\mu([0,x])</math>. This probability distribution, called the [[Cantor distribution]], has no discrete part. That is, the corresponding measure is [[Atom (measure theory)|atomless]]. This is why there are no jump discontinuities in the function; any such jump would correspond to an atom in the measure. However, no non-constant part of the Cantor function can be represented as an integral of a [[probability density function]]; integrating any putative [[probability density function]] that is not [[almost everywhere]] zero over any interval will give positive probability to some interval to which this distribution assigns probability zero. In particular, as {{harvtxt|Vitali|1905}} pointed out, the function is not the integral of its derivative even though the derivative exists almost everywhere. The Cantor function is the standard example of a [[singular function]]. The Cantor function is also a standard example of a function with [[bounded variation]] but, as mentioned above, is not absolutely continuous. However, every absolutely continuous function is continuous with bounded variation. The Cantor function is non-decreasing, and so in particular its graph defines a [[rectifiable curve]]. {{harvtxt|Scheeffer|1884}} showed that the arc length of its graph is 2. Note that the graph of any nondecreasing function such that <math>f(0)=0</math> and <math>f(1)=1</math> has length not greater than 2. In this sense, the Cantor function is extremal. ===Lack of absolute continuity=== The [[Lebesgue measure]] of the [[Cantor set]] is 0. Therefore, for any positive ''ε'' < 1 and any ''δ'' > 0, there exists a finite sequence of [[pairwise disjoint]] sub-intervals with total length < ''δ'' over which the Cantor function cumulatively rises more than ''ε''. In fact, for every ''δ'' > 0 there are finitely many pairwise disjoint intervals (''x<SUB>k</SUB>'',''y<SUB>k</SUB>'') (1 ≤ ''k'' ≤ ''M'') with <math>\sum\limits_{k=1}^M (y_k-x_k)<\delta</math> and <math>\sum\limits_{k=1}^M (c(y_k)-c(x_k))=1</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)