Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Catalan's conjecture
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Pillai's conjecture== {{unsolved|mathematics|Does each positive integer occur only finitely many times as a difference of perfect powers?}} '''Pillai's conjecture''' concerns a general difference of perfect powers {{OEIS|id=A001597}}: it is an [[open problem]] initially proposed by [[S. S. Pillai]], who conjectured that the gaps in the sequence of perfect powers tend to infinity. This is equivalent to saying that each positive integer occurs only finitely many times as a difference of perfect powers: more generally, in 1931 Pillai conjectured that for fixed positive integers ''A'', ''B'', ''C'' the equation <math>Ax^n - By^m = C</math> has only finitely many solutions (''x'', ''y'', ''m'', ''n'') with (''m'', ''n'') β (2, 2). Pillai proved that for fixed ''A'', ''B'', ''x'', ''y'', and for any Ξ» less than 1, we have <math>|Ax^n - By^m| \gg x^{\lambda n}</math> uniformly in ''m'' and ''n''.<ref name=rnt>{{citation | pages=[https://archive.org/details/rationalnumberth00nark/page/n261 253]β254 | title=Rational Number Theory in the 20th Century: From PNT to FLT | url=https://archive.org/details/rationalnumberth00nark | url-access=limited | series=Springer Monographs in Mathematics | first=Wladyslaw | last=Narkiewicz | publisher=[[Springer-Verlag]] | year=2011 | isbn=978-0-857-29531-6}}</ref> The general conjecture would follow from the [[ABC conjecture]].<ref name=rnt/><ref>{{citation | last=Schmidt | first=Wolfgang M. | author-link=Wolfgang M. Schmidt | title=Diophantine approximations and Diophantine equations | series=Lecture Notes in Mathematics | volume=1467 | publisher=[[Springer-Verlag]] | year=1996 | edition=2nd | isbn=3-540-54058-X | zbl=0754.11020 | page=207}}</ref> Pillai's conjecture means that for every natural number ''n'', there are only finitely many pairs of perfect powers with difference ''n''. The list below shows, for ''n'' β€ 64, all solutions for perfect powers less than 10<sup>18</sup>, such that the exponent of both powers is greater than 1. The number of such solutions for each ''n'' is listed at {{oeis|id=A076427}}. See also {{oeis|id=A103953}} for the smallest solution (> 0). {|class="wikitable" style="border:none;text-align:right;" ! ''n'' ! solution<br />count ! numbers ''k'' such that ''k'' and ''k'' + ''n''<br />are both perfect powers |rowspan="33" style="padding:2px;background:white;border:none;"| ! ''n'' ! solution<br />count ! numbers ''k'' such that ''k'' and ''k'' + ''n''<br />are both perfect powers |- | 1 || 1 ||style="text-align:left"| 8 | 33 || 2 ||style="text-align:left"| 16, 256 |- | 2 || 1 ||style="text-align:left"| 25 | 34 || 0 ||style="text-align:left"| ''none'' |- | 3 || 2 ||style="text-align:left"| 1, 125 | 35 || 3 ||style="text-align:left"| 1, 289, 1296 |- | 4 || 3 ||style="text-align:left"| 4, 32, 121 | 36 || 2 ||style="text-align:left"| 64, 1728 |- | 5 || 2 ||style="text-align:left"| 4, 27 | 37 || 3 ||style="text-align:left"| 27, 324, {{val|14348907}} |- | 6 || 0 ||style="text-align:left"| ''none'' | 38 || 1 ||style="text-align:left"| 1331 |- | 7 || 5 ||style="text-align:left"| 1, 9, 25, 121, {{val|32761}} | 39 || 4 ||style="text-align:left"| 25, 361, 961, {{val|10609}} |- | 8 || 3 ||style="text-align:left"| 1, 8, {{val|97336}} | 40 || 4 ||style="text-align:left"| 9, 81, 216, 2704 |- | 9 || 4 ||style="text-align:left"| 16, 27, 216, {{val|64000}} | 41 || 3 ||style="text-align:left"| 8, 128, 400 |- | 10 || 1 ||style="text-align:left"| 2187 | 42 || 0 ||style="text-align:left"| ''none'' |- | 11 || 4 ||style="text-align:left"| 16, 25, 3125, 3364 | 43 || 1 ||style="text-align:left"| 441 |- | 12 || 2 ||style="text-align:left"| 4, 2197 | 44 || 3 ||style="text-align:left"| 81, 100, 125 |- | 13 || 3 ||style="text-align:left"| 36, 243, 4900 | 45 || 4 ||style="text-align:left"| 4, 36, 484, 9216 |- | 14 || 0 ||style="text-align:left"| ''none'' | 46 || 1 ||style="text-align:left"| 243 |- | 15 || 3 ||style="text-align:left"| 1, 49, {{val|1295029}} | 47 || 6 ||style="text-align:left"| 81, 169, 196, 529, 1681, {{val|250000}} |- | 16 || 3 ||style="text-align:left"| 9, 16, 128 | 48 || 4 ||style="text-align:left"| 1, 16, 121, 21904 |- | 17 || 7 ||style="text-align:left"| 8, 32, 64, 512, {{val|79507}}, {{val|140608}}, {{val|143384152904}} | 49 || 3 ||style="text-align:left"| 32, 576, {{val|274576}} |- | 18 || 3 ||style="text-align:left"| 9, 225, 343 | 50 || 0 ||style="text-align:left"| ''none'' |- | 19 || 5 ||style="text-align:left"| 8, 81, 125, 324, {{val|503284356}} | 51 || 2 ||style="text-align:left"| 49, 625 |- | 20 || 2 ||style="text-align:left"| 16, 196 | 52 || 1 ||style="text-align:left"| 144 |- | 21 || 2 ||style="text-align:left"| 4, 100 | 53 || 2 ||style="text-align:left"| 676, {{val|24336}} |- | 22 || 2 ||style="text-align:left"| 27, 2187 | 54 || 2 ||style="text-align:left"| 27, 289 |- | 23 || 4 ||style="text-align:left"| 4, 9, 121, 2025 | 55 || 3 ||style="text-align:left"| 9, 729, {{val|175561}} |- | 24 || 5 ||style="text-align:left"| 1, 8, 25, 1000, {{val|542939080312}} | 56 || 4 ||style="text-align:left"| 8, 25, 169, 5776 |- | 25 || 2 ||style="text-align:left"| 100, 144 | 57 || 3 ||style="text-align:left"| 64, 343, 784 |- | 26 || 3 ||style="text-align:left"| 1, {{val|42849}}, {{val|6436343}} | 58 || 0 ||style="text-align:left"| ''none'' |- | 27 || 3 ||style="text-align:left"| 9, 169, 216 | 59 || 1 ||style="text-align:left"| 841 |- | 28 || 7 ||style="text-align:left"| 4, 8, 36, 100, 484, {{val|50625}}, {{val|131044}} | 60 || 4 ||style="text-align:left"| 4, 196, {{val|2515396}}, {{val|2535525316}} |- | 29 || 1 ||style="text-align:left"| 196 | 61 || 2 ||style="text-align:left"| 64, 900 |- | 30 || 1 ||style="text-align:left"| 6859 | 62 || 0 ||style="text-align:left"| ''none'' |- | 31 || 2 ||style="text-align:left"| 1, 225 | 63 || 4 ||style="text-align:left"| 1, 81, 961, {{val|183250369}} |- | 32 || 4 ||style="text-align:left"| 4, 32, 49, 7744 | 64 || 4 ||style="text-align:left"| 36, 64, 225, 512 |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)