Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cauchy–Binet formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Special cases == If ''n'' < ''m'' then <math>\tbinom{[n]}m</math> is the empty set, and the formula says that det(''AB'') = 0 (its right hand side is an [[empty sum]]); indeed in this case the [[rank (linear algebra)|rank]] of the ''m''×''m'' matrix ''AB'' is at most ''n'', which implies that its determinant is zero. If ''n'' = ''m'', the case where ''A'' and ''B'' are square matrices, <math>\tbinom{[n]}m=\{[n]\} </math> (a [[singleton (mathematics)|singleton]] set), so the sum only involves ''S'' = [''n''], and the formula states that det(''AB'') = det(''A'')det(''B''). For ''m'' = 0, ''A'' and ''B'' are [[empty matrix|empty matrices]] (but of different shapes if ''n'' > 0), as is their product ''AB''; the summation involves a single term ''S'' = Ø, and the formula states 1 = 1, with both sides given by the determinant of the 0×0 matrix. For ''m'' = 1, the summation ranges over the collection <math>\tbinom{[n]}1</math> of the ''n'' different singletons taken from [''n''], and both sides of the formula give <math>\textstyle\sum_{j=1}^nA_{1,j}B_{j,1}</math>, the [[dot product]] of the pair of [[Tuple|vector]]s represented by the matrices. The smallest value of ''m'' for which the formula states a non-trivial equality is ''m'' = 2; it is discussed in the article on the [[Binet–Cauchy identity]]. === In the case ''n'' = 3 === Let <math> \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{x}, \boldsymbol{y},\boldsymbol{z},\boldsymbol{w} </math> be three-dimensional vectors. : <math> \begin{align} & 1 = 1 & (m = 0)\\[10pt] & \boldsymbol{a}\cdot \boldsymbol{x} = a_1 x_1 + a_2 x_2 + a_3 x_3 & (m = 1)\\[10pt] & \begin{vmatrix} \boldsymbol{a}\cdot \boldsymbol{x} & \boldsymbol{a}\cdot \boldsymbol{y}\\ \boldsymbol{b}\cdot \boldsymbol{x} & \boldsymbol{b}\cdot \boldsymbol{y} \end{vmatrix} \\[4pt] = {} & \begin{vmatrix} a_2 & a_3\\ b_2 & b_3 \end{vmatrix} \begin{vmatrix} x_2 & y_2\\ x_3 & y_3 \end{vmatrix} + \begin{vmatrix} a_3 & a_1\\ b_3 & b_1 \end{vmatrix} \begin{vmatrix} x_3 & y_3\\ x_1 & y_1 \end{vmatrix} + \begin{vmatrix} a_1 & a_2\\ b_1 & b_2 \end{vmatrix} \begin{vmatrix} x_1 & y_1\\ x_2 & y_2 \end{vmatrix}\\[4pt] = {} & (\boldsymbol{a}\times\boldsymbol{b})\cdot(\boldsymbol{x}\times\boldsymbol{y}) & (m = 2)\\[10pt] & \begin{vmatrix} \boldsymbol{a}\cdot \boldsymbol{x} & \boldsymbol{a}\cdot \boldsymbol{y} & \boldsymbol{a}\cdot \boldsymbol{z}\\ \boldsymbol{b}\cdot \boldsymbol{x} & \boldsymbol{b}\cdot \boldsymbol{y} & \boldsymbol{b}\cdot \boldsymbol{z}\\ \boldsymbol{c}\cdot \boldsymbol{x} & \boldsymbol{c}\cdot \boldsymbol{y} & \boldsymbol{c}\cdot \boldsymbol{z} \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3\\ b_1 & b_2 & b_3\\ c_1 & c_2 & c_3 \end{vmatrix} \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}\\[4pt] = {} & [\boldsymbol{a}\cdot (\boldsymbol{b} \times \boldsymbol{c})] [\boldsymbol{x}\cdot (\boldsymbol{y} \times \boldsymbol{z})] & (m = 3)\\[10pt] & \begin{vmatrix} \boldsymbol{a}\cdot \boldsymbol{x} & \boldsymbol{a}\cdot \boldsymbol{y} & \boldsymbol{a}\cdot \boldsymbol{z} & \boldsymbol{a}\cdot \boldsymbol{w} \\ \boldsymbol{b}\cdot \boldsymbol{x} & \boldsymbol{b}\cdot \boldsymbol{y} & \boldsymbol{b}\cdot \boldsymbol{z} & \boldsymbol{b}\cdot \boldsymbol{w} \\ \boldsymbol{c}\cdot \boldsymbol{x} & \boldsymbol{c}\cdot \boldsymbol{y} & \boldsymbol{c}\cdot \boldsymbol{z} & \boldsymbol{c}\cdot \boldsymbol{w} \\ \boldsymbol{d}\cdot \boldsymbol{x} & \boldsymbol{d}\cdot \boldsymbol{y} & \boldsymbol{d}\cdot \boldsymbol{z} & \boldsymbol{d}\cdot \boldsymbol{w} \end{vmatrix} = 0 & (m = 4) \end{align} </math> In the case ''m'' > 3, the right-hand side always equals 0.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)