Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cauchy principal value
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Distribution theory == Let <math> {C_{c}^{\infty}}(\mathbb{R}) </math> be the set of [[bump function]]s, i.e., the space of [[smooth function]]s with [[compact support]] on the [[real number|real line]] <math> \mathbb{R} </math>. Then the map <math display="block"> \operatorname{p.\!v.} \left( \frac{1}{x} \right) \,:\, {C_{c}^{\infty}}(\mathbb{R}) \to \mathbb{C} </math> defined via the Cauchy principal value as <math display="block"> \left[ \operatorname{p.\!v.} \left( \frac{1}{x} \right) \right](u) = \lim_{\varepsilon \to 0^{+}} \int_{\mathbb{R} \setminus [- \varepsilon,\varepsilon]} \frac{u(x)}{x} \, \mathrm{d} x = \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{+ \infty} \frac{u(x) - u(- x)}{x} \, \mathrm{d} x \quad \text{for } u \in {C_{c}^{\infty}}(\mathbb{R}) </math> is a [[distribution (mathematics)|distribution]]. The map itself may sometimes be called the '''principal value''' (hence the notation '''p.v.'''). This distribution appears, for example, in the [[Fourier transform]] of the [[sign function]] and the [[Heaviside step function]]. ===Well-definedness as a distribution=== To prove the existence of the limit <math display="block"> \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{+ \infty} \frac{u(x) - u(- x)}{x} \, \mathrm{d}x </math> for a [[Schwartz function]] <math>u(x)</math>, first observe that <math>\frac{u(x) - u(-x)}{x}</math> is continuous on <math>[0, \infty),</math> as <math display="block"> \lim_{\,x \searrow 0\,} \; \Bigl[ u(x) - u(-x) \Bigr] ~= ~0 ~</math> and hence <math display="block"> \lim_{x\searrow 0} \, \frac{u(x) - u(-x)}{x} ~=~ \lim_{\,x\searrow 0\,} \, \frac{u'(x) + u'(-x)}{1} ~=~ 2u'(0)~, </math> since <math>u'(x)</math> is continuous and [[L'Hopital's rule]] applies. Therefore, <math>\int_0^1 \, \frac{u(x) - u(-x)}{x} \, \mathrm{d}x</math> exists and by applying the [[mean value theorem]] to <math>u(x) - u(-x) ,</math> we get: :<math> \left|\, \int_0^1\,\frac{u(x) - u(-x)}{x} \,\mathrm{d}x \,\right| \;\leq\; \int_0^1 \frac{\bigl|u(x)-u(-x)\bigr|}{x} \,\mathrm{d}x \;\leq\; \int_0^1\,\frac{\,2x\,}{x}\,\sup_{x \in \mathbb{R} }\,\Bigl|u'(x)\Bigr| \,\mathrm{d}x \;\leq\; 2\,\sup_{x \in \mathbb{R} }\,\Bigl|u'(x)\Bigr| ~. </math> And furthermore: :<math> \left| \,\int_1^\infty \frac {\;u(x) - u(-x)\;}{x} \,\mathrm{d}x \,\right| \;\leq\; 2 \,\sup_{x\in\mathbb{R}} \,\Bigl|x\cdot u(x)\Bigr|~\cdot\;\int_1^\infty \frac{\mathrm{d}x}{\,x^2\,} \;=\; 2 \,\sup_{x\in\mathbb{R}}\, \Bigl|x \cdot u(x)\Bigr| ~, </math> we note that the map <math display="block"> \operatorname{p.v.}\;\left( \frac{1}{\,x\,} \right) \,:\, {C_{c}^{\infty}}(\mathbb{R}) \to \mathbb{C} </math> is bounded by the usual seminorms for [[Schwartz functions]] <math> u</math>. Therefore, this map defines, as it is obviously linear, a continuous functional on the [[Schwartz space]] and therefore a [[distribution (mathematics)#Tempered distributions and Fourier transform|tempered distribution]]. Note that the proof needs <math>u</math> merely to be continuously differentiable in a neighbourhood of 0 and <math> x\,u </math> to be bounded towards infinity. The principal value therefore is defined on even weaker assumptions such as <math>u</math> integrable with compact support and differentiable at 0. ===More general definitions=== The principal value is the inverse distribution of the function <math> x </math> and is almost the only distribution with this property: <math display="block"> x f = 1 \quad \Leftrightarrow \quad \exists K: \; \; f = \operatorname{p.\!v.} \left( \frac{1}{x} \right) + K \delta, </math> where <math> K </math> is a constant and <math> \delta </math> the Dirac distribution. In a broader sense, the principal value can be defined for a wide class of [[singular integral]] [[integral kernel|kernels]] on the Euclidean space <math> \mathbb{R}^{n} </math>. If <math> K </math> has an isolated singularity at the origin, but is an otherwise "nice" function, then the principal-value distribution is defined on compactly supported smooth functions by <math display="block"> [\operatorname{p.\!v.} (K)](f) = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^{n} \setminus B_{\varepsilon}(0)} f(x) K(x) \, \mathrm{d} x. </math> Such a limit may not be well defined, or, being well-defined, it may not necessarily define a distribution. It is, however, well-defined if <math> K </math> is a continuous [[homogeneous function]] of degree <math> -n </math> whose integral over any sphere centered at the origin vanishes. This is the case, for instance, with the [[Riesz transform]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)