Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Channel capacity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Additivity of channel capacity == Channel capacity is additive over independent channels.<ref>{{cite book |last1=Cover |first1=Thomas M. |last2=Thomas |first2=Joy A. |title=Elements of Information Theory |publisher=Wiley-Interscience |edition=Second |date=2006 |pages=206β207 |chapter=Chapter 7: Channel Capacity |isbn=978-0-471-24195-9}}</ref> It means that using two independent channels in a combined manner provides the same theoretical capacity as using them independently. More formally, let <math>p_{1}</math> and <math>p_{2}</math> be two independent channels modelled as above; <math>p_{1}</math> having an input alphabet <math>\mathcal{X}_{1}</math> and an output alphabet <math>\mathcal{Y}_{1}</math>. Idem for <math>p_{2}</math>. We define the product channel <math>p_{1}\times p_2</math> as <math>\forall (x_{1}, x_{2}) \in (\mathcal{X}_{1}, \mathcal{X}_{2}),\;(y_{1}, y_{2}) \in (\mathcal{Y}_{1}, \mathcal{Y}_{2}),\; (p_{1}\times p_{2})((y_{1}, y_{2}) | (x_{1},x_{2}))=p_{1}(y_{1}|x_{1})p_{2}(y_{2}|x_{2})</math> This theorem states: <math display="block"> C(p_{1}\times p_{2}) = C(p_{1}) + C(p_{2})</math> {{Proof| We first show that <math> C(p_{1}\times p_{2}) \geq C(p_{1}) + C(p_{2}) </math>. Let <math>X_1</math> and <math>X_2</math> be two independent random variables. Let <math>Y_1</math> be a random variable corresponding to the output of <math>X_1</math> through the channel <math>p_{1}</math>, and <math>Y_2</math> for <math>X_2</math> through <math>p_2</math>. By definition <math>C(p_{1}\times p_{2}) = \sup_{p_{X_{1},X_{2}}}(I(X_{1},X_{2} : Y_{1},Y_{2}))</math>. Since <math>X_1</math> and <math>X_2</math> are independent, as well as <math>p_1</math> and <math>p_2</math>, <math>(X_1,Y_1)</math> is independent of <math>(X_2,Y_2)</math>. We can apply the following property of [[mutual information]]: <math>I(X_1,X_2 : Y_1, Y_2) = I(X_1:Y_1) + I(X_2:Y_2)</math> For now we only need to find a distribution <math>p_{X_1,X_2}</math> such that <math>I(X_1,X_2 : Y_1,Y_2) \geq I(X_1 : Y_1) + I(X_2 : Y_2)</math>. In fact, <math>\pi_1</math> and <math>\pi_2</math>, two probability distributions for <math>X_1</math> and <math>X_2</math> achieving <math>C(p_1)</math> and <math>C(p_2)</math>, suffice: :<math>C(p_{1}\times p_{2}) \geq I(X_1, X_2 : Y_1, Y_2) = I(X_1:Y_1) + I(X_2:Y_2) = C(p_1) + C(p_2)</math> ie. <math>C(p_{1}\times p_{2}) \geq C(p_1) + C(p_2)</math> Now let us show that <math> C(p_{1}\times p_{2}) \leq C(p_{1}) + C(p_{2}) </math>. Let <math>\pi_{12}</math> be some distribution for the channel <math>p_{1}\times p_{2}</math> defining <math>(X_1, X_2)</math> and the corresponding output <math>(Y_1, Y_2)</math>. Let <math>\mathcal{X}_1</math> be the alphabet of <math>X_1</math>, <math>\mathcal{Y}_1</math> for <math>Y_1</math>, and analogously <math>\mathcal{X}_2</math> and <math>\mathcal{Y}_2</math>. By definition of mutual information, we have <math> \begin{align} I(X_1, X_2 : Y_1, Y_2) &= H(Y_1, Y_2) - H(Y_1, Y_2 | X_1, X_2)\\ &\leq H(Y_1) + H(Y_2) - H(Y_1, Y_2 | X_1, X_2) \end{align} </math> Let us rewrite the last term of [[Entropy (information theory)|entropy]]. <math>H(Y_1,Y_2|X_1,X_2) = \sum_{(x_1, x_2) \in \mathcal{X}_1\times \mathcal{X}_2}\mathbb{P}(X_{1}, X_{2} = x_{1}, x_{2})H(Y_{1}, Y_{2} | X_{1}, X_{2} = x_{1}, x_{2}) </math> By definition of the product channel, <math>\mathbb{P}(Y_{1},Y_{2}=y_{1},y_{2}|X_{1},X_{2}=x_{1},x_{2})=\mathbb{P}(Y_{1}=y_{1}|X_{1}=x_{1})\mathbb{P}(Y_{2}=y_{2}|X_{2}=x_{2})</math>. For a given pair <math>(x_1, x_2)</math>, we can rewrite <math>H(Y_1,Y_2|X_1,X_2=x_1,x_2)</math> as: <math> \begin{align} H(Y_1, Y_2 | X_1, X_2 = x_1,x_2) &= \sum_{(y_1, y_2) \in \mathcal{Y}_1\times \mathcal{Y}_2}\mathbb{P}(Y_1, Y_2 = y_1, y_2 | X_1, X_2 = x_1, x_2)\log(\mathbb{P}(Y_1, Y_2 = y_1, y_2 | X_1, X_2 = x_1, x_2)) \\ &= \sum_{(y_1, y_2) \in \mathcal{Y}_1\times \mathcal{Y}_2}\mathbb{P}(Y_1, Y_2 = y_1, y_2 | X_1, X_2 = x_1, x_2)[\log(\mathbb{P}(Y_1 = y_1 | X_1 = x_1)) + \log(\mathbb{P}(Y_2 = y_2 | X_2 = x_2))] \\ &=H(Y_{1}|X_{1}=x_1)+H(Y_{2}|X_{2}=x_2) \end{align} </math> By summing this equality over all <math>(x_1, x_2)</math>, we obtain <math>H(Y_1,Y_2|X_1,X_2)=H(Y_1|X_1)+H(Y_2|X_2)</math>. We can now give an upper bound over mutual information: <math> \begin{align} I(X_{1},X_{2}:Y_{1},Y_{2})&\leq H(Y_{1})+H(Y_{2})-H(Y_{1}|X_{1})-H(Y_{2}|X_{2})\\ &=I(X_{1}:Y_{1})+I(X_{2}:Y_{2}) \end{align} </math> This relation is preserved at the supremum. Therefore :<math>C(p_{1}\times p_{2}) \leq C(p_1)+C(p_2)</math> Combining the two inequalities we proved, we obtain the result of the theorem: :<math>C(p_{1}\times p_{2})=C(p_{1})+C(p_{2})</math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)