Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Charge qubit
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Hamiltonian == If the Josephson junction has a junction capacitance <math>C_{\rm J}</math>, and the gate capacitor <math>C_{\rm g}</math>, then the charging (Coulomb) energy of one Cooper pair is: :<math>E_{\rm C}=(2e)^2/2(C_{\rm g}+C_{\rm J}).</math> If <math>n</math> denotes the number of excess Cooper pairs in the island (i.e. its net charge is <math>-2ne</math>), then the Hamiltonian is:<ref name=":0" /> :<math>H=\sum_n \big[E_{\rm C}(n-n_{\rm g})^2 |n \rangle \langle n| - \frac{1}{2} E_{\rm J} (|n \rangle \langle n+1|+|n+1 \rangle \langle n|) \big],</math> where <math>n_{\rm g}=C_{\rm g}V_{\rm g}/(2e)</math> is a control parameter known as effective offset charge (<math>V_{\rm g}</math> is the gate voltage), and <math>E_{\rm J}</math> the Josephson energy of the tunneling junction. At low temperature and low gate voltage, one can limit the analysis to only the lowest <math>n=0</math> and <math>n=1</math> states, and therefore obtain a two-level quantum system (a.k.a. [[qubit]]). Note that some recent papers<ref>{{Cite journal|last1=Didier|first1=Nicolas|last2=Sete|first2=Eyob A.|last3=da Silva|first3=Marcus P.|last4=Rigetti|first4=Chad|date=2018-02-23|title=Analytical modeling of parametrically-modulated transmon qubits|journal=Physical Review A|volume=97|issue=2|pages=022330|doi=10.1103/PhysRevA.97.022330|issn=2469-9926|arxiv=1706.06566|bibcode=2018PhRvA..97b2330D|s2cid=118921729 }}</ref><ref>{{Cite journal|last1=Schreier|first1=J. A.|last2=Houck|first2=A. A.|last3=Koch|first3=Jens|last4=Schuster|first4=D. I.|last5=Johnson|first5=B. R.|last6=Chow|first6=J. M.|last7=Gambetta|first7=J. M.|last8=Majer|first8=J.|last9=Frunzio|first9=L.|last10=Devoret|first10=M. H.|last11=Girvin|first11=S. M.|date=2008-05-12|title=Suppressing Charge Noise Decoherence in Superconducting Charge Qubits|journal=Physical Review B|volume=77|issue=18|pages=180502|doi=10.1103/PhysRevB.77.180502|issn=1098-0121|arxiv=0712.3581|bibcode=2008PhRvB..77r0502S|s2cid=119181860 }}</ref> adopt a different notation, and define the charging energy as that of one electron: :<math>E_{\rm C}=e^2/2(C_{\rm g}+C_{\rm J}),</math> and then the corresponding Hamiltonian is: :<math>H=\sum_n \big[4E_{\rm C}(n-n_{\rm g})^2 |n \rangle \langle n| - \frac{1}{2} E_{\rm J} (|n \rangle \langle n+1|+|n+1 \rangle \langle n|) \big].</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)