Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chernoff bound
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Properties === The exponential function is convex, so by [[Jensen's inequality]] <math>\operatorname E (e^{t X}) \ge e^{t \operatorname E (X)}</math>. It follows that the bound on the right tail is greater or equal to one when <math>a \le \operatorname E (X)</math>, and therefore trivial; similarly, the left bound is trivial for <math>a \ge \operatorname E (X)</math>. We may therefore combine the two infima and define the two-sided Chernoff bound:<math display="block">C(a) = \inf_{t} M(t) e^{-t a} </math>which provides an upper bound on the folded [[cumulative distribution function]] of <math>X</math> (folded at the mean, not the median). The logarithm of the two-sided Chernoff bound is known as the [[rate function]] (or ''Cramér transform'') <math>I = -\log C</math>. It is equivalent to the [[Legendre–Fenchel transformation|Legendre–Fenchel transform]] or [[convex conjugate]] of the [[cumulant generating function]] <math>K = \log M</math>, defined as: <math display="block">I(a) = \sup_{t} at - K(t) </math>The [[Moment-generating function#Important properties|moment generating function]] is [[Logarithmically convex function|log-convex]], so by a property of the convex conjugate, the Chernoff bound must be [[Logarithmically concave function|log-concave]]. The Chernoff bound attains its maximum at the mean, <math>C(\operatorname E(X))=1</math>, and is invariant under translation: <math display="inline">C_{X+k}(a) = C_X(a - k) </math>. The Chernoff bound is exact if and only if <math>X</math> is a single concentrated mass ([[degenerate distribution]]). The bound is tight only at or beyond the extremes of a bounded random variable, where the infima are attained for infinite <math>t</math>. For unbounded random variables the bound is nowhere tight, though it is asymptotically tight up to sub-exponential factors ("exponentially tight").{{Citation needed|date=February 2023}} Individual moments can provide tighter bounds, at the cost of greater analytical complexity.<ref>{{Cite journal |last1=Philips |first1=Thomas K. |last2=Nelson |first2=Randolph |date=1995 |title=The Moment Bound Is Tighter Than Chernoff's Bound for Positive Tail Probabilities |url=https://www.jstor.org/stable/2684633 |journal=The American Statistician |volume=49 |issue=2 |pages=175–178 |doi=10.2307/2684633 |jstor=2684633 |issn=0003-1305}}</ref> In practice, the exact Chernoff bound may be unwieldy or difficult to evaluate analytically, in which case a suitable upper bound on the moment (or cumulant) generating function may be used instead (e.g. a sub-parabolic CGF giving a sub-Gaussian Chernoff bound). {| class="wikitable mw-collapsible" |+Exact rate functions and Chernoff bounds for common distributions !Distribution !<math>\operatorname E (X)</math> !<math>K(t)</math> !<math>I(a)</math> !<math>C(a)</math> |- |[[Normal distribution]] |<math>0</math> |<math>\frac{1}{2}\sigma^2t^2</math> |<math>\frac{1}{2} \left( \frac{a}{\sigma} \right)^2</math> |<math>\exp \left( {-\frac{a^2}{2\sigma^2}} \right)</math> |- |[[Bernoulli distribution]](detailed below) |<math>p</math> |<math>\ln \left( 1-p + pe^t \right)</math> |<math>D_{KL}(a \parallel p)</math> |<math>\left (\frac{p}{a}\right )^{a} {\left (\frac{1 - p}{1-a}\right )}^{1 - a}</math> |- |Standard Bernoulli (''H'' is the [[binary entropy function]]) |<math>\frac{1}{2}</math> |<math>\ln \left( 1 + e^t \right) - \ln(2)</math> |<math>\ln(2) - H(a)</math> |<math>\frac{1}{2}a^{-a}(1-a)^{-(1-a)}</math> |- |[[Rademacher distribution]] |<math>0</math> |<math>\ln \cosh(t)</math> |<math>\ln(2) - H\left(\frac{1+a}{2}\right)</math> |<math>\sqrt{(1+a)^{-1-a}(1-a)^{-1+a}}</math> |- |[[Gamma distribution]] |<math>\theta k</math> |<math>-k\ln(1 - \theta t)</math> |<math>-k\ln\frac{a}{\theta k} -k + \frac{a}{\theta} </math> |<math>\left(\frac{a}{\theta k}\right)^k e^{k-a/\theta}</math> |- |[[Chi-squared distribution]] |<math>k</math> |<math>-\frac{k}{2}\ln (1-2t)</math> |<math>\frac{k}{2} \left(\frac{a}{k} - 1 - \ln \frac{a}{k} \right)</math><ref>{{Cite journal |last=Ghosh |first=Malay |date=2021-03-04 |title=Exponential Tail Bounds for Chisquared Random Variables |journal=Journal of Statistical Theory and Practice |language=en |volume=15 |issue=2 |pages=35 |doi=10.1007/s42519-020-00156-x |s2cid=233546315 |issn=1559-8616|doi-access=free }}</ref> |<math>\left( \frac{a}{k} \right)^{k/2} e^{k/2-a/2} </math> |- |[[Poisson distribution]] |<math>\lambda</math> |<math>\lambda(e^t - 1)</math> |<math>a \ln (a/\lambda) - a + \lambda</math> |<math>(a/\lambda)^{-a} e^{a-\lambda}</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)