Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Classical physics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Comparison with modern physics == In contrast to classical physics, "[[modern physics]]" is usually used to focus on those revolutionary changes created by [[quantum physics]] and [[theory of relativity]].<ref name=Krane-2019>{{Cite book |last=Krane |first=Kenneth S. |title=Modern physics |date=2020 |publisher=John Wiley & Sons, Inc |isbn=978-1-119-49548-2 |edition=4 |location=Hoboken, New Jersey}}</ref>{{rp|2}} A [[physical system]] can be described by classical physics when it satisfies conditions such that the laws of classical physics are approximately valid. In practice, physical objects ranging from those larger than [[atom]]s and [[molecule]]s, to objects in the macroscopic and astronomical realm, can be well-described (understood) with classical mechanics. Beginning at the atomic level and lower, the laws of classical physics break down and generally do not provide a correct description of nature. Electromagnetic fields and forces can be described well by classical electrodynamics at length scales and field strengths large enough that quantum mechanical effects are negligible. Unlike quantum physics, classical physics is generally characterized by the principle of complete [[Scientific determinism|determinism]], although deterministic interpretations of quantum mechanics do exist. From the point of view of classical physics as being non-relativistic physics, the predictions of general and special relativity are significantly different from those of classical theories, particularly concerning the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light. Traditionally, light was reconciled with classical mechanics by assuming the existence of a stationary medium through which light propagated, the [[luminiferous aether]], which was later shown not to exist.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)