Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Closed-loop controller
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Closed-loop transfer function== {{Main|Closed-loop transfer function}} The output of the system ''y''(''t'') is fed back through a sensor measurement ''F'' to a comparison with the reference value ''r''(''t''). The controller ''C'' then takes the error ''e'' (difference) between the reference and the output to change the inputs ''u'' to the system under control ''P''. This is shown in the figure. This kind of controller is a closed-loop controller or feedback controller. This is called a single-input-single-output (''SISO'') control system; ''MIMO'' (i.e., Multi-Input-Multi-Output) systems, with more than one input/output, are common. In such cases variables are represented through [[coordinate vector|vectors]] instead of simple [[scalar (mathematics)|scalar]] values. For some [[distributed parameter systems]] the vectors may be infinite-[[Dimension (vector space)|dimensional]] (typically functions). [[File:simple feedback control loop2.svg|center|A simple feedback control loop]] If we assume the controller ''C'', the plant ''P'', and the sensor ''F'' are [[linear]] and [[time-invariant]] (i.e., elements of their [[transfer function]] ''C''(''s''), ''P''(''s''), and ''F''(''s'') do not depend on time), the systems above can be analysed using the [[Laplace transform]] on the variables. This gives the following relations: : <math>Y(s) = P(s) U(s)</math> : <math>U(s) = C(s) E(s)</math> : <math>E(s) = R(s) - F(s)Y(s).</math> Solving for ''Y''(''s'') in terms of ''R''(''s'') gives : <math>Y(s) = \left( \frac{P(s)C(s)}{1 + P(s)C(s)F(s)} \right) R(s) = H(s)R(s).</math> The expression <math>H(s) = \frac{P(s)C(s)}{1 + F(s)P(s)C(s)}</math> is referred to as the ''closed-loop transfer function'' of the system. The numerator is the forward (open-loop) gain from ''r'' to ''y'', and the denominator is one plus the gain in going around the feedback loop, the so-called loop gain. If <math>|P(s)C(s)| \gg 1</math>, i.e., it has a large [[norm (mathematics)|norm]] with each value of ''s'', and if <math>|F(s)| \approx 1</math>, then ''Y''(''s'') is approximately equal to ''R''(''s'') and the output closely tracks the reference input.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)