Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coercivity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Experimental determination== {| class="wikitable floatright" |+ Coercivities of some magnetic materials |- ! Material ! Coercivity<br />(kA/m) |- | [[Supermalloy]]<br />(16[[iron|Fe]]:79[[nickel|Ni]]:5[[molybdenum|Mo]]) | 0.0002<ref name=Tumanski>{{cite book|last1=Tumanski|first1=S.|title=Handbook of magnetic measurements|date=2011|publisher=CRC Press|location=Boca Raton, FL|isbn=9781439829523}}</ref>{{rp|131,133}} |- | [[Permalloy]] ([[iron|Fe]]:4[[nickel|Ni]]) | 0.0008β0.08<ref>{{Cite journal|title=Thickness and grain-size dependence of the coercivity in permalloy thin films|journal=Journal of Applied Physics|volume=81|issue=8|pages=4122|author=M. A. Akhter-D. J. Mapps-Y. Q. Ma Tan-Amanda Petford-Long-R. Doole|doi=10.1063/1.365100|year=1997|last2=Mapps|last3=Ma Tan|last4=Petford-Long|last5=Doole|bibcode=1997JAP....81.4122A}}</ref> |- | [[Iron filings]] (0.9995 [[mass fraction (chemistry)|wt]]) | 0.004β37.4<ref name="mysite.du.edu">{{Cite web |last=Calvert |first=J. B. |date=6 December 2003 |orig-date=13 December 2002 |title=Iron |url=http://mysite.du.edu/~jcalvert/phys/iron.htm |url-status=dead |archive-url=https://web.archive.org/web/20070915131344/http://mysite.du.edu/%7Ejcalvert/phys/iron.htm#Magn |archive-date=2007-09-15 |access-date=2023-11-04 |website=mysite.du.edu}}</ref><ref name="Magnetic Properties of Solids">{{cite web|url=http://hyperphysics.phy-astr.gsu.edu/Hbase/tables/magprop.html|title=Magnetic Properties of Solids|publisher=Hyperphysics.phy-astr.gsu.edu|access-date=22 November 2014}}</ref> |- | [[Electrical steel]] (11Fe:Si) | 0.032β0.072<ref>{{cite web|url=http://cartech.ides.com/datasheet.aspx?E=193~192~191~190~189&CK=1967748|title=timeout|publisher=Cartech.ides.com|access-date=22 November 2014}}{{Dead link|date=July 2020 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> |- | [[Wrought iron|Raw iron]] (1896) | 0.16<ref>{{cite book|url=https://books.google.com/books?id=G0cOAAAAYAAJ&pg=PA133|title=Dynamo-electric machinery|access-date=22 November 2014|last1=Thompson|first1=Silvanus Phillips|year=1896}}</ref> |- | [[Nickel]] (0.99 wt) | 0.056β23<ref name="Magnetic Properties of Solids"/><ref>{{Cite journal|title=Influence of rf magnetron sputtering conditions on the magnetic, crystalline, and electrical properties of thin nickel films|journal=Journal of Applied Physics|volume=75|issue=10|pages=5779|author=M. S. Miller-F. E. Stageberg-Y. M. Chow-K. Rook-L. A. Heuer|doi=10.1063/1.355560|year=1994|last2=Stageberg|last3=Chow|last4=Rook|last5=Heuer|bibcode=1994JAP....75.5779M}}</ref> |- | [[Ferrite (magnet)|Ferrite]] magnet<br />(Zn<sub>x</sub>FeNi<sub>1βx</sub>O<sub>3</sub>) | 1.2β16<ref>{{Cite journal|journal=IEEE Transactions on Magnetics|volume=33|issue=5|pages=3748β3750|doi=10.1109/20.619559|year=1997|last1=Zhenghong Qian|last2=Geng Wang|last3=Sivertsen|first3=J.M.|last4=Judy|first4=J.H.|title=Ni ''Zn'' ferrite thin films prepared by Facing Target Sputtering|bibcode=1997ITM....33.3748Q}}</ref> |- | 2Fe:Co,<ref>{{cite book|url=https://books.google.com/books?id=y0FF19lud5YC&pg=PA142|title=Handbook of Charged Particle Optics, Second Edition|access-date=22 November 2014|isbn=9781420045550|last1=Orloff|first1=Jon|date=2017-12-19|publisher=CRC Press }}</ref> iron pole | 19<ref name="Magnetic Properties of Solids"/> |- | [[Cobalt]] (0.99 wt) | 0.8β72<ref name="Pubs">{{Cite journal|title=Magnetic Cobalt Nanowire Thin Films|journal=The Journal of Physical Chemistry B|volume=109|issue=5|pages=1919β22|doi=10.1021/jp045554t|pmid=16851175|year=2005|last1=Luo|first1=Hongmei|last2=Wang|first2=Donghai|last3=He|first3=Jibao|last4=Lu|first4=Yunfeng}}</ref> |- | [[Alnico]] | 30β150<ref>{{Cite web |title=Cast ALNICO Permanent Magnets |url=https://www.arnoldmagnetics.com/wp-content/uploads/2017/10/Cast-Alnico-Permanent-Magnet-Brochure-101117-1.pdf |access-date=4 November 2023 |website=Arnold Magnetic Technologies}}</ref> |- | Disk drive recording medium <br />([[chromium|Cr]]:[[cobalt|Co]]:[[platinum|Pt]]) | 140<ref>{{Cite journal|journal=IEEE Transactions on Magnetics|volume=27|issue=6|pages=5052β5054|doi=10.1109/20.278737|year=1991|last1=Yang|first1=M.M.|last2=Lambert|first2=S.E.|last3=Howard|first3=J.K.|last4=Hwang|first4=C.|title=Laminated CoPt ''Cr''/Cr films for low noise longitudinal recording|bibcode=1991ITM....27.5052Y}}</ref> |- | [[Neodymium magnet]] (NdFeB) | 800β950<ref>{{Cite journal|title=High-remanence rapidly solidified Nd-Fe-B: Die-upset magnets (invited)|journal=Journal of Applied Physics|volume=73|issue=10|pages=5751|author=C. D. Fuerst-E. G. Brewer|doi=10.1063/1.353563|year=1993|last2=Brewer|bibcode=1993JAP....73.5751F}}</ref><ref>{{cite web|url=http://wondermagnet.com/magfaq.html|title=WONDERMAGNET.COM - NdFeB Magnets, Magnet Wire, Books, Weird Science, Needful Things|publisher=Wondermagnet.com|access-date=22 November 2014|archive-date=11 February 2015|archive-url=https://web.archive.org/web/20150211041455/http://www.wondermagnet.com/magfaq.html|url-status=dead}}</ref> |- | 12[[iron|Fe]]:13[[platinum|Pt]] ({{chem2|Fe48Pt52}}) | β₯980<ref>{{harvnb|Chen|Nikles|2002}}</ref> |- | <!--Someone with access plug in the proportions-->?([[dysprosium|Dy]],[[niobium|Nb]],[[gallium|Ga]]([[cobalt|Co]]):2[[neodymium|Nd]]:14[[iron|Fe]]:[[boron|B]]) | 2040β2090<ref>{{cite journal |last1=Bai |first1=G. |last2=Gao |first2=R.W. |last3=Sun |first3=Y. |last4=Han |first4=G.B. |last5=Wang |first5=B. |title=Study of high-coercivity sintered NdFeB magnets |journal=Journal of Magnetism and Magnetic Materials |date=January 2007 |volume=308 |issue=1 |pages=20β23 |doi=10.1016/j.jmmm.2006.04.029 |bibcode=2007JMMM..308...20B }}</ref><ref>{{cite journal |last1=Jiang |first1=H. |last2=Evans |first2=J. |last3=OβShea |first3=M.J. |last4=Du |first4=Jianhua |title=Hard magnetic properties of rapidly annealed NdFeB thin films on Nb and V buffer layers |journal=Journal of Magnetism and Magnetic Materials |date=2001 |volume=224 |issue=3 |pages=233β240 |doi=10.1016/S0304-8853(01)00017-8 |bibcode=2001JMMM..224..233J }}</ref> |- | Samarium-cobalt magnet <br />(2[[samarium|Sm]]:17[[iron|Fe]]:3[[nitrogen|N]]; 10{{nbsp}}[[kelvin|K]]) | <40β2800<ref>{{cite journal |last1=Nakamura |first1=H. |last2=Kurihara |first2=K. |last3=Tatsuki |first3=T. |last4=Sugimoto |first4=S. |last5=Okada |first5=M. |last6=Homma |first6=M. |title=Phase Changes and Magnetic Properties of Sm 2 Fe 17 N x Alloys Heat-Treated in Hydrogen |journal=IEEE Translation Journal on Magnetics in Japan |date=October 1992 |volume=7 |issue=10 |pages=798β804 |doi=10.1109/TJMJ.1992.4565502 }}</ref><ref>{{cite journal |last1=Rani |first1=R. |last2=Hegde |first2=H. |last3=Navarathna |first3=A. |last4=Cadieu |first4=F. J. |title=High coercivity Sm 2 Fe 17 N x and related phases in sputtered film samples |journal=Journal of Applied Physics |date=15 May 1993 |volume=73 |issue=10 |pages=6023β6025 |id={{INIST|4841321}} |doi=10.1063/1.353457 |bibcode=1993JAP....73.6023R }}</ref> |- | [[Samariumβcobalt magnet|Samarium-cobalt magnet]] | 3200<ref>{{Cite journal |last1=de Campos |first1=M. F. |last2=Landgraf |first2=F. J. G. |last3=Saito |first3=N. H. |last4=Romero |first4=S. A. |last5=Neiva |first5=A. C. |last6=Missell |first6=F. P. |last7=de Morais |first7=E. |last8=Gama |first8=S. |last9=Obrucheva |first9=E. V. |last10=Jalnin |first10=B. V. |date=1998-07-01 |title=Chemical composition and coercivity of SmCo5 magnets |url=https://pubs.aip.org/jap/article/84/1/368/491720/Chemical-composition-and-coercivity-of-SmCo5 |journal=Journal of Applied Physics |language=en |volume=84 |issue=1 |pages=368β373 |doi=10.1063/1.368075 |bibcode=1998JAP....84..368D |issn=0021-8979|url-access=subscription }}</ref> |} Typically the coercivity of a magnetic material is determined by measurement of the [[magnetic hysteresis]] loop, also called the ''magnetization curve'', as illustrated in the figure above. The apparatus used to acquire the data is typically a [[vibrating-sample magnetometer|vibrating-sample]] or alternating-gradient [[magnetometer]]. The applied field where the data line crosses zero is the coercivity. If an [[antiferromagnet]] is present in the sample, the coercivities measured in increasing and decreasing fields may be unequal as a result of the [[exchange bias]] effect.{{citation needed|date=January 2021}} The coercivity of a material depends on the time scale over which a magnetization curve is measured. The magnetization of a material measured at an applied reversed field which is nominally smaller than the coercivity may, over a long time scale, slowly [[Relaxation (physics)|relax]] to zero. Relaxation occurs when reversal of magnetization by domain wall motion is [[Arrhenius equation|thermally activated]] and is dominated by [[magnetic viscosity]].<ref>{{harvnb|Gaunt|1986}}</ref> The increasing value of coercivity at high frequencies is a serious obstacle to the increase of [[Bit rate|data rates]] in high-[[bandwidth (computing)|bandwidth]] magnetic recording, compounded by the fact that increased storage density typically requires a higher coercivity in the media.{{Citation needed|date=September 2010}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)