Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Combination
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example of counting combinations === As a specific example, one can compute the number of five-card hands possible from a standard fifty-two card deck as:<ref>{{harvnb|Mazur|2010|loc=p. 21}}</ref> <math display="block"> \binom{52}{5} = \frac{52\times51\times50\times49\times48}{5\times4\times3\times2\times1} = \frac{311{,}875{,}200}{120} = 2{,}598{,}960.</math> Alternatively one may use the formula in terms of factorials and cancel the factors in the numerator against parts of the factors in the denominator, after which only multiplication of the remaining factors is required: <math display="block">\begin{alignat}{2} \binom{52}{5} &= \frac{52!}{5!47!} \\[5pt] &= \frac{52\times51\times50\times49\times48\times\cancel{47!}}{5\times4\times3\times2\times\cancel{1}\times\cancel{47!}} \\[5pt] &= \frac{52\times51\times50\times49\times48}{5\times4\times3\times2} \\[5pt] &= \frac{(26\times\cancel{2})\times(17\times\cancel{3})\times(10\times\cancel{5})\times49\times(12\times\cancel{4})}{\cancel{5}\times\cancel{4}\times\cancel{3}\times\cancel{2}} \\[5pt] &= {26\times17\times10\times49\times12} \\[5pt] &= 2{,}598{,}960. \end{alignat}</math> Another alternative computation, equivalent to the first, is based on writing <math display="block"> \binom{n}{k} = \frac { ( n - 0 ) }1 \times \frac { ( n - 1 ) }2 \times \frac { ( n - 2 ) }3 \times \cdots \times \frac { ( n - (k - 1) ) }k,</math> which gives <math display="block"> \binom{52}{5} = \frac{52}1 \times \frac{51}2 \times \frac{50}3 \times \frac{49}4 \times \frac{48}5 = 2{,}598{,}960.</math> When evaluated in the following order, {{math|52 ÷ 1 × 51 ÷ 2 × 50 ÷ 3 × 49 ÷ 4 × 48 ÷ 5}}, this can be computed using only integer arithmetic. The reason is that when each division occurs, the intermediate result that is produced is itself a binomial coefficient, so no remainders ever occur. Using the symmetric formula in terms of factorials without performing simplifications gives a rather extensive calculation: <math display="block"> \begin{align} \binom{52}{5} &= \frac{n!}{k!(n-k)!} = \frac{52!}{5!(52-5)!} = \frac{52!}{5!47!} \\[6pt] &= \tfrac{80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,883,277,824,000,000,000,000}{120\times258,623,241,511,168,180,642,964,355,153,611,979,969,197,632,389,120,000,000,000} \\[6pt] &= 2{,}598{,}960. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)