Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Compact operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == In the following, <math>X, Y, Z, W</math> are Banach spaces, <math>B(X,Y)</math> is the space of bounded operators <math>X \to Y</math> under the [[operator norm]], and <math>K(X,Y)</math> denotes the space of compact operators <math>X \to Y</math>. <math>\operatorname{Id}_X</math> denotes the [[identity operator]] on <math>X</math>, <math>B(X) = B(X,X)</math>, and <math>K(X) = K(X,X)</math>. * <math>K(X,Y)</math> is a closed subspace of <math>B(X,Y)</math> (in the norm topology). Equivalently,{{sfn | Rudin | 1991 | pp=103-115}} ** given a sequence of compact operators <math>(T_n)_{n \in \mathbf{N}}</math> mapping <math>X \to Y</math> (where <math>X,Y</math>are Banach) and given that <math>(T_n)_{n \in \mathbf{N}}</math> converges to <math>T</math> with respect to the [[operator norm]], ''<math>T</math>'' is then compact. * Conversely, if <math>X,Y</math> are Hilbert spaces, then every compact operator from <math>X \to Y</math> is the limit of finite rank operators. Notably, this "[[approximation property]]" is false for general Banach spaces ''X'' and ''Y''.<ref name=":0" /> *<math>B(Y,Z)\circ K(X,Y)\circ B(W,X)\subseteq K(W,Z),</math> where the [[function composition|composition]] of sets is taken element-wise. In particular, <math>K(X)</math> forms a two-sided [[ideal (ring theory)|ideal]] in <math>B(X)</math>. *Any compact operator is [[strictly singular]], but not vice versa.<ref>N.L. Carothers, ''A Short Course on Banach Space Theory'', (2005) London Mathematical Society Student Texts '''64''', Cambridge University Press.</ref> * A bounded linear operator between Banach spaces is compact if and only if its adjoint is compact (''Schauder's theorem'').{{sfn | Conway | 1990 | pp=173-177}} ** If <math>T: X \to Y</math> is bounded and compact, then:{{sfn | Rudin | 1991 | pp=103-115}}{{sfn | Conway | 1990 | pp=173-177}} *** the closure of the range of ''<math>T</math>'' is [[Separable space|separable]]. *** if the range of ''<math>T</math>'' is closed in ''Y'', then the range of ''<math>T</math>'' is finite-dimensional. * If <math>X</math> is a Banach space and there exists an [[invertible]] bounded compact operator <math>T: X \to X</math> then ''<math>X</math>'' is necessarily finite-dimensional.{{sfn|Conway|1990|pp=173-177}} Now suppose that <math>X</math> is a Banach space and <math>T\colon X \to X</math> is a compact linear operator, and <math>T^* \colon X^* \to X^*</math> is the [[Hermitian adjoint|adjoint]] or [[transpose]] of ''T''. * For any <math>T\in K(X)</math>, <math>{\operatorname{Id}_X} - T</math>  is a [[Fredholm operator]] of index 0. In particular, <math>\operatorname{Im}({\operatorname{Id}_X} - T)</math> is closed. This is essential in developing the spectral properties of compact operators. One can notice the similarity between this property and the fact that, if ''<math>M</math>'' and ''<math>N</math>'' are subspaces of ''<math>X</math>'' where <math>M</math> is closed and ''<math>N</math>'' is finite-dimensional, then <math>M+N</math> is also closed. * If <math>S\colon X \to X</math> is any bounded linear operator then both <math>S \circ T</math> and <math>T \circ S</math> are compact operators.{{sfn | Rudin | 1991 | pp=103-115}} * If <math>\lambda \neq 0</math> then the range of <math>T - \lambda \operatorname{Id}_X</math> is closed and the kernel of <math>T - \lambda \operatorname{Id}_X</math> is finite-dimensional.{{sfn | Rudin | 1991 | pp=103-115}} * If <math>\lambda \neq 0</math> then the following are finite and equal: <math>\dim \ker \left( T - \lambda \operatorname{Id}_X \right) = \dim\big(X / \operatorname{Im}\left( T - \lambda \operatorname{Id}_X \right) \big) = \dim \ker \left( T^* - \lambda \operatorname{Id}_{X^*} \right) = \dim\big(X^* / \operatorname{Im}\left( T^* - \lambda \operatorname{Id}_{X^*} \right) \big)</math>{{sfn | Rudin | 1991 | pp=103-115}} * The [[Spectrum (functional analysis)|spectrum]] <math>\sigma(T)</math> of ''<math>T</math>'' is compact, [[countable]], and has at most one [[limit point]], which would necessarily be the origin.{{sfn | Rudin | 1991 | pp=103-115}} * If <math>X</math> is infinite-dimensional then <math>0 \in \sigma(T)</math>.{{sfn | Rudin | 1991 | pp=103-115}} * If <math>\lambda \neq 0</math> and <math>\lambda \in \sigma(T)</math> then <math>\lambda</math> is an eigenvalue of both ''<math>T</math>'' and <math>T^{*}</math>.{{sfn | Rudin | 1991 | pp=103-115}} * For every <math>r > 0</math> the set <math>E_r = \left\{ \lambda \in \sigma(T) : | \lambda | > r \right\}</math> is finite, and for every non-zero <math>\lambda \in \sigma(T)</math> the range of <math>T - \lambda \operatorname{Id}_X</math> is a [[proper subset]] of ''X''.{{sfn | Rudin | 1991 | pp=103-115}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)