Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Companion matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Diagonalizability== The roots of the characteristic polynomial <math>p(x)</math> are the [[eigenvalue]]s of <math> C(p) </math>. If there are ''n'' distinct eigenvalues <math>\lambda_1,\ldots,\lambda_n</math>, then <math> C(p) </math> is [[diagonalizable]] as <math> C(p) = V^{-1}\!D V</math>, where ''D'' is the diagonal matrix and ''V'' is the [[Vandermonde matrix]] corresponding to the {{mvar|Ξ»}}'s: <math display="block"> D = \begin{bmatrix} \lambda_1 & 0 & \!\!\!\cdots\!\!\! & 0\\ 0 & \lambda_2 & \!\!\!\cdots\!\!\! & 0\\ 0 & 0 & \!\!\!\cdots\!\!\! & \lambda_n \end{bmatrix}, \qquad V = \begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 & \!\!\!\cdots\!\!\! & \lambda_1^{n-1}\\ 1 & \lambda_2 & \lambda_2^2 & \!\!\!\cdots\!\!\! & \lambda_2^{n-1}\\[-1em] \vdots & \vdots & \vdots & \!\!\!\ddots\!\!\! &\vdots \\ 1 & \lambda_n & \lambda_n^2 & \!\!\!\cdots\!\!\! & \lambda_n^{n-1} \end{bmatrix}. </math> Indeed, a reasonably hard computation shows that the transpose <math> C(p)^T </math> has eigenvectors <math> v_i=(1,\lambda_i,\ldots,\lambda_i ^{n-1}) </math> with <math> C(p)^T\!(v_i) = \lambda_i v_i </math>, which follows from <math> p(\lambda_i)=c_0+c_1\lambda_i+\cdots+c_{n-1}\lambda_i^{n-1}+\lambda_i ^n = 0 </math>. Thus, its diagonalizing [[change of basis]] matrix is <math> V^T = [v_1^T \ldots v_n^T] </math>, meaning <math> C(p)^T = V^T D\, (V^T) ^{-1} </math>, and taking the transpose of both sides gives <math> C(p) = V^{-1}\!D V</math>. We can read the eigenvectors of <math> C(p) </math> with <math> C(p)(w_i) = \lambda_i w_i </math> from the equation <math> C(p) = V^{-1}\!D V</math>: they are the column vectors of the [[Vandermonde matrix#Inverse Vandermonde Matrix|inverse Vandermonde matrix]] <math> V^{-1} = [w_1^T \cdots w_n^T] </math>. This matrix is known explicitly, giving the eigenvectors <math> w_i = (L_{0i}, \ldots, L_{(n-1)i}) </math>, with coordinates equal to the coefficients of the [[Lagrange polynomial|Lagrange polynomials]] <math display="block"> L_i(x) = L_{0i} + L_{1i}x + \cdots + L_{(n-1)i}x^{n-1} = \prod_{j\neq i} \frac{x-\lambda_j}{\lambda_j-\lambda_i} = \frac{p(x)}{(x-\lambda_i)\,p'(\lambda_i)}. </math> Alternatively, the scaled eigenvectors <math> \tilde w_i = p'\!(\lambda_i)\,w_i </math> have simpler coefficients. If <math> p(x) </math> has multiple roots, then <math> C(p) </math> is not diagonalizable. Rather, the [[Jordan canonical form]] of <math> C(p) </math> contains one [[Jordan block]] for each distinct root; if the multiplicity of the root is ''m'', then the block is an ''m'' Γ ''m'' matrix with <math> \lambda </math> on the diagonal and 1 in the entries just above the diagonal. in this case, ''V'' becomes a [[Vandermonde matrix#Confluent Vandermonde matrices|confluent Vandermonde matrix]].<ref> {{cite book | last1 = Turnbull | first1 = H. W. | last2 = Aitken | first2 = A. C. | date = 1961 | title = An Introduction to the Theory of Canonical Matrices | location = New York | publisher = Dover | page = 60 | isbn = 978-0486441689 }} </ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)