Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Consistency
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== First-order logic == ===Notation=== In the following context of [[mathematical logic]], the [[turnstile symbol]] <math>\vdash</math> means "provable from". That is, <math>a\vdash b</math> reads: ''b'' is provable from ''a'' (in some specified formal system). ===Definition=== *A set of [[Well-formed formula|formulas]] <math>\Phi</math> in first-order logic is '''consistent''' (written <math>\operatorname{Con} \Phi</math>) if there is no formula <math>\varphi</math> such that <math>\Phi \vdash \varphi</math> and <math>\Phi \vdash \lnot\varphi</math>. Otherwise <math>\Phi</math> is '''inconsistent''' (written <math>\operatorname{Inc}\Phi</math>). *<math>\Phi</math> is said to be '''simply consistent''' if for no formula <math>\varphi</math> of <math>\Phi</math>, both <math>\varphi</math> and the [[negation]] of <math>\varphi</math> are theorems of <math>\Phi</math>.{{clarify|reason=Assuming that 'provable from' and 'theorem of' is equivalent, there seems to be no difference between 'consistent' and 'simply consistent'. If that is true, both definitions should be joined into a single one. If not, the difference should be made clear.|date=September 2018}} *<math>\Phi</math> is said to be '''absolutely consistent''' or '''Post consistent''' if at least one formula in the language of <math>\Phi</math> is not a theorem of <math>\Phi</math>. *<math>\Phi</math> is said to be '''maximally consistent''' if <math>\Phi</math> is consistent and for every formula <math>\varphi</math>, <math>\operatorname{Con} (\Phi \cup \{\varphi\})</math> implies <math>\varphi \in \Phi</math>. *<math>\Phi</math> is said to '''contain witnesses''' if for every formula of the form <math>\exists x \,\varphi</math> there exists a [[Term (logic)|term]] <math>t</math> such that <math>(\exists x \, \varphi \to \varphi {t \over x}) \in \Phi</math>, where <math>\varphi {t \over x}</math> denotes the [[substitution (logic)|substitution]] of each <math>x</math> in <math>\varphi</math> by a <math>t</math>; see also [[First-order logic]].{{citation needed|date=September 2018}} ===Basic results=== # The following are equivalent: ## <math>\operatorname{Inc}\Phi</math> ## For all <math>\varphi,\; \Phi \vdash \varphi.</math> # Every satisfiable set of formulas is consistent, where a set of formulas <math>\Phi</math> is satisfiable if and only if there exists a model <math>\mathfrak{I}</math> such that <math>\mathfrak{I} \vDash \Phi </math>. # For all <math>\Phi</math> and <math>\varphi</math>: ## if not <math> \Phi \vdash \varphi</math>, then <math>\operatorname{Con}\left( \Phi \cup \{\lnot\varphi\}\right)</math>; ## if <math>\operatorname{Con}\Phi</math> and <math>\Phi \vdash \varphi</math>, then <math> \operatorname{Con} \left(\Phi \cup \{\varphi\}\right)</math>; ## if <math>\operatorname{Con}\Phi</math>, then <math>\operatorname{Con}\left( \Phi \cup \{\varphi\}\right)</math> or <math>\operatorname{Con}\left( \Phi \cup \{\lnot \varphi\}\right)</math>. # Let <math>\Phi</math> be a maximally consistent set of formulas and suppose it contains [[Witness (mathematics)|witnesses]]. For all <math>\varphi</math> and <math> \psi </math>: ## if <math> \Phi \vdash \varphi</math>, then <math>\varphi \in \Phi</math>, ## either <math>\varphi \in \Phi</math> or <math>\lnot \varphi \in \Phi</math>, ## <math>(\varphi \lor \psi) \in \Phi</math> if and only if <math>\varphi \in \Phi</math> or <math>\psi \in \Phi</math>, ## if <math>(\varphi\to\psi) \in \Phi</math> and <math>\varphi \in \Phi </math>, then <math>\psi \in \Phi</math>, ## <math>\exists x \, \varphi \in \Phi</math> if and only if there is a term <math>t</math> such that <math>\varphi{t \over x}\in\Phi</math>.{{citation needed|date=September 2018}} ===Henkin's theorem=== Let <math>S</math> be a [[signature (logic)|set of symbols]]. Let <math>\Phi</math> be a maximally consistent set of <math>S</math>-formulas containing [[Witness (mathematics)#Henkin witnesses|witnesses]]. Define an [[equivalence relation]] <math>\sim</math> on the set of <math>S</math>-terms by <math>t_0 \sim t_1</math> if <math>\; t_0 \equiv t_1 \in \Phi</math>, where <math>\equiv</math> denotes [[First-order logic#Equality and its axioms|equality]]. Let <math>\overline t</math> denote the [[equivalence class]] of terms containing <math>t </math>; and let <math>T_\Phi := \{ \; \overline t \mid t \in T^S \} </math> where <math>T^S </math> is the set of terms based on the set of symbols <math>S</math>. Define the <math>S</math>-[[Structure (mathematical logic)|structure]] <math>\mathfrak T_\Phi </math> over <math> T_\Phi </math>, also called the '''term-structure''' corresponding to <math>\Phi</math>, by: # for each <math>n</math>-ary relation symbol <math>R \in S</math>, define <math>R^{\mathfrak T_\Phi} \overline {t_0} \ldots \overline {t_{n-1}}</math> if <math>\; R t_0 \ldots t_{n-1} \in \Phi;</math><ref>This definition is independent of the choice of <math>t_i</math> due to the substitutivity properties of <math>\equiv</math> and the maximal consistency of <math>\Phi</math>.</ref> # for each <math>n</math>-ary function symbol <math>f \in S</math>, define <math>f^{\mathfrak T_\Phi} (\overline {t_0} \ldots \overline {t_{n-1}}) := \overline {f t_0 \ldots t_{n-1}};</math> # for each constant symbol <math>c \in S</math>, define <math>c^{\mathfrak T_\Phi}:= \overline c.</math> Define a variable assignment <math>\beta_\Phi</math> by <math>\beta_\Phi (x) := \bar x</math> for each variable <math>x</math>. Let <math>\mathfrak I_\Phi := (\mathfrak T_\Phi,\beta_\Phi)</math> be the '''term [[Interpretation (logic)#First-order logic|interpretation]]''' associated with <math>\Phi</math>. Then for each <math>S</math>-formula <math>\varphi</math>: {{center|1= <math>\mathfrak I_\Phi \vDash \varphi</math> if and only if <math> \; \varphi \in \Phi.</math>{{citation needed|date=September 2018}} }} ===Sketch of proof=== There are several things to verify. First, that <math>\sim</math> is in fact an equivalence relation. Then, it needs to be verified that (1), (2), and (3) are well defined. This falls out of the fact that <math>\sim</math> is an equivalence relation and also requires a proof that (1) and (2) are independent of the choice of <math> t_0, \ldots ,t_{n-1} </math> class representatives. Finally, <math> \mathfrak I_\Phi \vDash \varphi </math> can be verified by induction on formulas.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)