Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convex conjugate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == For more examples, see {{Section link||Table of selected convex conjugates}}. * The convex conjugate of an [[affine function]] <math> f(x) = \left\langle a, x \right\rangle - b</math> is <math display="block"> f^{*}\left(x^{*} \right) = \begin{cases} b, & x^{*} = a \\ +\infty, & x^{*} \ne a. \end{cases} </math> * The convex conjugate of a [[power function]] <math> f(x) = \frac{1}{p}|x|^p, 1 < p < \infty </math> is <math display="block"> f^{*}\left(x^{*} \right) = \frac{1}{q}|x^{*}|^q, 1<q<\infty, \text{where} \tfrac{1}{p} + \tfrac{1}{q} = 1.</math> * The convex conjugate of the [[absolute value]] function <math>f(x) = \left| x \right|</math> is <math display="block"> f^{*}\left(x^{*} \right) = \begin{cases} 0, & \left|x^{*} \right| \le 1 \\ \infty, & \left|x^{*} \right| > 1. \end{cases} </math> * The convex conjugate of the [[exponential function]] <math>f(x)= e^x</math> is <math display="block"> f^{*}\left(x^{*} \right) = \begin{cases} x^{*} \ln x^{*} - x^{*} , & x^{*} > 0 \\ 0 , & x^{*} = 0 \\ \infty , & x^{*} < 0. \end{cases} </math> The convex conjugate and Legendre transform of the exponential function agree except that the [[domain of a function|domain]] of the convex conjugate is strictly larger as the Legendre transform is only defined for [[positive real numbers]]. ===Connection with expected shortfall (average value at risk)=== See [https://link.springer.com/article/10.1007/s10107-014-0801-1 this article for example.] Let ''F'' denote a [[cumulative distribution function]] of a [[random variable]] ''X''. Then ([[Integration by parts|integrating by parts]]), <math display="block">f(x):= \int_{-\infty}^x F(u) \, du = \operatorname{E}\left[\max(0,x-X)\right] = x-\operatorname{E} \left[\min(x,X)\right]</math> has the convex conjugate <math display="block">f^{*}(p)= \int_0^p F^{-1}(q) \, dq = (p-1)F^{-1}(p)+\operatorname{E}\left[\min(F^{-1}(p),X)\right] = p F^{-1}(p)-\operatorname{E}\left[\max(0,F^{-1}(p)-X)\right].</math> === Ordering === A particular interpretation has the transform <math display="block">f^\text{inc}(x):= \arg \sup_t t\cdot x-\int_0^1 \max\{t-f(u),0\} \, du,</math> as this is a nondecreasing rearrangement of the initial function ''f''; in particular, <math>f^\text{inc}= f</math> for ''f'' nondecreasing.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)