Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Current algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Example== In a [[Non-abelian group|non-Abelian]] [[Yang–Mills]] symmetry, where {{mvar|V}} and {{mvar|A}} are flavor-current and axial-current 0th components (charge densities), respectively, the paradigm of a current algebra is<ref>{{cite journal |last1=Gell-Mann |first1=M. |year=1964 |title=The Symmetry group of vector and axial vector currents |journal=Physics |volume=1 |issue=1 |page=63 |doi=10.1103/PhysicsPhysiqueFizika.1.63|pmid=17836376 |doi-access=free }}</ref><ref>{{harvnb|Treiman|Jackiw|Gross|1972}}</ref> :<math> \bigl[\ V^a(\vec{x}),\ V^b(\vec{y})\ \bigr] = i\ f^{ab}_c\ \delta(\vec{x}-\vec{y})\ V^c(\vec{x})\ , </math> and :<math> \bigl[\ V^a(\vec{x}),\ A^b(\vec{y})\ \bigr] = i\ f^{ab}_c\ \delta(\vec{x} - \vec{y})\ A^c(\vec{x})\ ,\qquad \bigl[\ A^a(\vec{x}),\ A^b(\vec{y})\ \bigr] = i\ f^{ab}_c\ \delta(\vec{x} - \vec{y})\ V^c(\vec{x}) ~,</math> where {{mvar|f}} are the structure constants of the [[Lie algebra]]. To get meaningful expressions, these must be [[normal order]]ed. The algebra resolves to a direct sum of two algebras, {{mvar|L}} and {{mvar|R}}, upon defining :<math> L^a(\vec{x})\equiv \tfrac{1}{2}\bigl(\ V^a(\vec{x}) - A^a(\vec{x})\ \bigr)\ , \qquad R^a(\vec{x}) \equiv \tfrac{1}{2}\bigl(\ V^a(\vec{x}) + A^a(\vec{x})\ \bigr)\ ,</math> whereupon <math> \bigl[\ L^a(\vec{x}),\ L^b(\vec{y})\ \bigr]= i\ f^{ab}_c\ \delta(\vec{x}-\vec{y})\ L^c(\vec{x})\ ,\quad \bigl[\ L^a(\vec{x}),\ R^b(\vec{y})\ \bigr] = 0, \quad \bigl[\ R^a(\vec{x}),\ R^b(\vec{y})\ \bigr] = i\ f^{ab}_c\ \delta(\vec{x}-\vec{y})\ R^c(\vec{x})~. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)