Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Decagon
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Side length === [[File:01-Zehneck-Seitenlänge.svg|300px|right]] The picture shows a regular decagon with side length <math>a</math> and radius <math>R</math> of the [[circumscribed circle]]. * The triangle <math>E_{10}E_1M</math> has two equally long legs with length <math>R</math> and a base with length <math>a</math> * The circle around <math>E_1</math> with radius <math>a</math> intersects <math>]M\,E_{10}[</math> in a point <math>P</math> (not designated in the picture). * Now the triangle <math>{E_{10}E_1P}\;</math> is an [[isosceles triangle]] with vertex <math>E_1</math> and with base angles <math>m\angle E_1 E_{10} P = m\angle E_{10} P E_1 = 72^\circ \;</math>. * Therefore <math>m\angle P E_1 E_{10} = 180^\circ -2\cdot 72^\circ = 36^\circ \;</math>. So <math>\; m\angle M E_1 P = 72^\circ- 36^\circ = 36^\circ\;</math> and hence <math>\; E_1 M P\;</math> is also an isosceles triangle with vertex <math>P</math>. The length of its legs is <math>a</math>, so the length of <math>[P\,E_{10}]</math> is <math>R-a</math>. * The isosceles triangles <math>E_{10} E_1 M\;</math> and <math>P E_{10} E_1\;</math> have equal angles of 36° at the vertex, and so they are [[Similarity (geometry)|similar]], hence: <math>\;\frac{a}{R}=\frac{R-a}{a}</math> * Multiplication with the denominators <math>R,a >0</math> leads to the quadratic equation: <math>\;a^2=R^2-aR\;</math> * This equation for the side length <math>a\,</math> has one positive solution: <math>\;a=\frac{R}{2}(-1+\sqrt{5})</math> So the regular decagon can be constructed with ''[[Straightedge and compass construction|ruler and compass]]''. ;Further conclusions: <math>\;R=\frac{2a}{\sqrt{5}-1}=\frac{a}{2}(\sqrt{5}+1)\;</math> and the base height of <math>\Delta\,E_{10} E_1 M\,</math> (i.e. the length of <math>[M\,D]</math>) is <math>h = \sqrt{R^2-(a/2)^2}=\frac{a}{2}\sqrt{5+2\sqrt{5}}\;</math> and the triangle has the area: <math>A_\Delta=\frac{a}{2}\cdot h = \frac{a^2}{4}\sqrt{5+2\sqrt{5}}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)