Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Definite matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definitions == In the following definitions, <math>\mathbf{x}^\mathsf{T}</math> is the transpose of <math>\mathbf{x},</math> <math>\mathbf{z}^*</math> is the [[conjugate transpose]] of <math>\mathbf{z},</math> and <math>\mathbf{0}</math> denotes the {{nobr|{{mvar|n}} dimensional}} zero-vector. === Definitions for real matrices === An <math>n \times n</math> symmetric real matrix <math>M</math> is said to be '''positive-definite''' if <math>\mathbf{x}^\mathsf{T} M\mathbf{x} > 0</math> for all non-zero <math>\mathbf{x}</math> in <math>\mathbb{R}^n.</math> Formally, {{Equation box 1 |indent = |title= |equation = <math>M \text{ positive-definite} \quad \iff \quad \mathbf{x}^\mathsf{T} M\mathbf{x} > 0 \text{ for all } \mathbf{x} \in \R^n \setminus \{\mathbf{0}\}</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=var(--background-color-success-subtle,#d5fdf4)}} An <math>n \times n</math> symmetric real matrix <math>M</math> is said to be '''positive-semidefinite''' or '''non-negative-definite''' if <math>\mathbf{x}^\mathsf{T} M\mathbf{x} \geq 0</math> for all <math>\mathbf{x}</math> in <math>\mathbb{R}^n .</math> Formally, {{Equation box 1 |indent = |title= |equation = <math>M \text{ positive semi-definite} \quad \iff \quad \mathbf{x}^\mathsf{T} M\mathbf{x} \geq 0 \text{ for all } \mathbf{x} \in \mathbb{R}^n</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=var(--background-color-success-subtle,#d5fdf4)}} An <math>n \times n</math> symmetric real matrix <math>M</math> is said to be '''negative-definite''' if <math>\mathbf{x}^\mathsf{T} M\mathbf{x} < 0</math> for all non-zero <math>\mathbf{x}</math> in <math>\R^n.</math> Formally, {{Equation box 1 |indent = |title= |equation = <math>M \text{ negative-definite} \quad \iff \quad \mathbf{x}^\mathsf{T} M\mathbf{x} < 0 \text{ for all } \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=var(--background-color-success-subtle,#d5fdf4)}} An <math>n \times n</math> symmetric real matrix <math>M</math> is said to be '''negative-semidefinite''' or '''non-positive-definite''' if <math>\mathbf{x}^\mathsf{T} M\mathbf{x} \leq 0</math> for all <math>\mathbf{x}</math> in <math>\mathbb{R}^n .</math> Formally, {{Equation box 1 |indent = |title= |equation = <math>M \text{ negative semi-definite} \quad \iff \quad \mathbf{x}^\mathsf{T} M\mathbf{x} \leq 0 \text{ for all } \mathbf{x} \in \R^n</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=var(--background-color-success-subtle,#d5fdf4)}} An <math>n \times n</math> symmetric real matrix which is neither positive semidefinite nor negative semidefinite is called '''indefinite'''. === Definitions for complex matrices === The following definitions all involve the term <math>\mathbf{z}^* M\mathbf{z}.</math> Notice that this is always a real number for any Hermitian square matrix <math>M.</math> An <math>n \times n</math> Hermitian complex matrix <math>M</math> is said to be '''positive-definite''' if <math>\mathbf{z}^* M\mathbf{z} > 0</math> for all non-zero <math>\mathbf{z}</math> in <math>\mathbb{C}^n .</math> Formally, {{Equation box 1 |indent = |title= |equation = <math>M \text{ positive-definite} \quad \iff \quad \mathbf{z}^* M\mathbf{z} > 0 \text{ for all } \mathbf{z} \in \mathbb{C}^n \setminus \{ \mathbf{0} \}</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=var(--background-color-success-subtle,#d5fdf4)}} An <math>n \times n</math> Hermitian complex matrix <math>M</math> is said to be '''positive semi-definite''' or '''non-negative-definite''' if <math>\mathbf{z}^* M\mathbf{z} \geq 0</math> for all <math>\mathbf{z}</math> in <math>\mathbb{C}^n .</math> Formally, {{Equation box 1 |indent = |title= |equation = <math>M \text{ positive semi-definite} \quad \iff \quad \mathbf{z}^* M\mathbf{z} \geq 0 \text{ for all } \mathbf{z} \in \mathbb{C}^n</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=var(--background-color-success-subtle,#d5fdf4)}} An <math>n \times n</math> Hermitian complex matrix <math>M</math> is said to be '''negative-definite''' if <math>\mathbf{z}^* M\mathbf{z} < 0</math> for all non-zero <math>\mathbf{z}</math> in <math>\mathbb{C}^n .</math> Formally, {{Equation box 1 |indent = |title= |equation = <math>M \text{ negative-definite} \quad \iff \quad \mathbf{z}^* M\mathbf{z} < 0 \text{ for all } \mathbf{z} \in \mathbb{C}^n \setminus \{\mathbf{0}\}</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=var(--background-color-success-subtle,#d5fdf4)}} An <math>n \times n</math> Hermitian complex matrix <math>M</math> is said to be '''negative semi-definite''' or '''non-positive-definite''' if <math>\mathbf{z}^* M\mathbf{z} \leq 0</math> for all <math>\mathbf{z}</math> in <math>\mathbb{C}^n .</math> Formally, {{Equation box 1 |indent = |title= |equation = <math>M \text{ negative semi-definite} \quad \iff \quad \mathbf{z}^* M\mathbf{z} \leq 0 \text{ for all } \mathbf{z} \in \mathbb{C}^n</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=var(--background-color-success-subtle,#d5fdf4)}} An <math>n \times n</math> Hermitian complex matrix which is neither positive semidefinite nor negative semidefinite is called '''indefinite'''. === Consistency between real and complex definitions === Since every real matrix is also a complex matrix, the definitions of "definiteness" for the two classes must agree. For complex matrices, the most common definition says that <math>M</math> is positive-definite if and only if <math>\mathbf{z}^* M\mathbf{z}</math> is real and positive for every non-zero complex column vectors <math>\mathbf{z} .</math> This condition implies that <math>M</math> is Hermitian (i.e. its transpose is equal to its conjugate), since <math>\mathbf{z}^* M\mathbf{z}</math> being real, it equals its conjugate transpose <math>\mathbf{z}^*M^*\mathbf{z}</math> for every <math>\mathbf{z},</math> which implies <math>M = M^* .</math> By this definition, a positive-definite ''real'' matrix <math>M</math> is Hermitian, hence symmetric; and <math>\mathbf{z}^\mathsf{T} M\mathbf{z}</math> is positive for all non-zero ''real'' column vectors <math>\mathbf{z} .</math> However the last condition alone is not sufficient for <math>M</math> to be positive-definite. For example, if <math display="block">M = \begin{bmatrix} 1 & 1 \\-1 & 1 \end{bmatrix},</math> then for any real vector <math>\mathbf{z}</math> with entries <math>a</math> and <math>b</math> we have <math>\mathbf{z}^\mathsf{T} M\mathbf{z} = \left(a + b\right)a + \left(-a + b\right) b = a^2 + b^2,</math> which is always positive if <math>\mathbf{z}</math> is not zero. However, if <math>\mathbf{z}</math> is the complex vector with entries {{math|1}} and {{tmath| i }}, one gets <math display="block">\mathbf{z}^* M\mathbf{z} = \begin{bmatrix} 1 & -i \end{bmatrix}M\begin{bmatrix} 1 \\i \end{bmatrix} = \begin{bmatrix} 1 + i & 1 - i \end{bmatrix}\begin{bmatrix} 1 \\i \end{bmatrix} = 2 + 2i .</math> which is not real. Therefore, <math>M</math> is not positive-definite. On the other hand, for a ''symmetric'' real matrix <math>M,</math> the condition "<math>\mathbf{z}^\mathsf{T} M\mathbf{z} > 0</math> for all nonzero real vectors <math>\mathbf{z}</math>" ''does'' imply that <math>M</math> is positive-definite in the complex sense. === Notation === If a Hermitian matrix <math>M</math> is positive semi-definite, one sometimes writes <math>M \succeq 0</math> and if <math>M</math> is positive-definite one writes <math>M \succ 0.</math> To denote that <math>M</math> is negative semi-definite one writes <math>M \preceq 0</math> and to denote that <math>M</math> is negative-definite one writes <math>M \prec 0.</math> The notion comes from [[functional analysis]] where positive semidefinite matrices define [[positive operator]]s. If two matrices <math>A</math> and <math>B</math> satisfy <math>B - A \succeq 0,</math> we can define a [[Partially ordered set#Non-strict partial order|non-strict partial order]] <math>B \succeq A</math> that is [[Reflexive relation|reflexive]], [[Antisymmetric relation|antisymmetric]], and [[Transitive relation|transitive]]; It is not a [[total order]], however, as <math>B - A,</math> in general, may be indefinite. A common alternative notation is <math>M \geq 0,</math> <math>M > 0,</math> <math>M \leq 0,</math> and <math>M < 0</math> for positive semi-definite and positive-definite, negative semi-definite and negative-definite matrices, respectively. This may be confusing, as sometimes [[nonnegative matrix|nonnegative matrices]] (respectively, nonpositive matrices) are also denoted in this way.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)