Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Delayed neutron
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Importance in nuclear reactors== If a [[nuclear reactor]] happened to be [[prompt critical]] β even very slightly β the number of neutrons would increase exponentially at a high rate, and very quickly the reactor would become uncontrollable by means of external mechanisms. The control of the power rise would then be left to its intrinsic physical stability factors, like the thermal dilatation of the core, or the increased [[resonance integral|resonance absorption]]s of neutrons, that usually tend to decrease the reactor's reactivity when temperature rises; but the reactor would run the risk of being damaged or destroyed by heat. However, thanks to the delayed neutrons, it is possible to leave the reactor in a [[subcritical]] state as far as only prompt neutrons are concerned: the delayed neutrons come a moment later, just in time to sustain the chain reaction when it is going to die out. In that regime, neutron production overall still grows exponentially, but on a time scale that is governed by the delayed neutron production, which is slow enough to be controlled (just as an otherwise unstable bicycle can be balanced because human reflexes are quick enough on the time scale of its instability). Thus, by widening the margins of non-operation and supercriticality and allowing more time to regulate the reactor, the delayed neutrons are essential to [[Passive nuclear safety|inherent reactor safety]], even in reactors requiring active control. The lower percentage<ref>{{cite web|url=https://www-nds.iaea.org/sgnucdat/a6.htm|title=Nuclear Data for Safeguards}}</ref> of delayed neutrons makes the use of large percentages of plutonium in nuclear reactors more challenging.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)