Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet's unit theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples=== [[Image:Discriminant49CubicFieldFundamentalDomainOfUnits.png|thumb|300px|right|A fundamental domain in logarithmic space of the group of units of the cyclic cubic field {{mvar|K}} obtained by adjoining to <math>\mathbb{Q}</math> a root of {{math|1=''f''(''x'') = ''x''<sup>3</sup> + ''x''<sup>2</sup> − 2''x'' − 1}}. If {{mvar|α}} denotes a root of {{math|''f''(''x'')}}, then a set of fundamental units is {{math|{''ε''<sub>1</sub>, ''ε''<sub>2</sub>}<nowiki/>}}, where {{math|1=''ε''<sub>1</sub> = ''α''<sup>2</sup> + ''α'' − 1}} and {{math|1=''ε''<sub>2</sub> = 2 − ''α''<sup>2</sup>}}. The area of the fundamental domain is approximately 0.910114, so the regulator of {{mvar|K}} is approximately 0.525455.]] *The regulator of an [[imaginary quadratic field]], or of the rational integers, is 1 (as the determinant of a {{math|0 × 0}} matrix is 1). *The regulator of a [[real quadratic field]] is the logarithm of its [[Fundamental unit (number theory)|fundamental unit]]: for example, that of <math>\mathbb{Q}(\sqrt{5})</math> is <math display="inline">\log \frac{\sqrt{5} + 1}{2}</math>. This can be seen as follows. A fundamental unit is <math display="inline">(\sqrt{5} + 1) / 2</math>, and its images under the two embeddings into <math>\mathbb{R}</math> are <math display="inline">(\sqrt{5} + 1) / 2</math> and <math display="inline">(-\sqrt{5} + 1) / 2</math>. So the {{math|''r'' × (''r'' + 1)}} matrix is <math display="block">\left[1\times\log\left|\frac{\sqrt{5} + 1}{2}\right|, \quad 1\times \log\left|\frac{-\sqrt{5} + 1}{2}\right|\ \right].</math> *The regulator of the [[cyclic cubic field]] <math>\mathbb{Q}(\alpha)</math>, where {{mvar|α}} is a root of {{math|''x''<sup>3</sup> + ''x''<sup>2</sup> − 2''x'' − 1}}, is approximately 0.5255. A basis of the group of units modulo roots of unity is {{math|{''ε''<sub>1</sub>, ''ε''<sub>2</sub>}<nowiki/>}} where {{math|1=''ε''<sub>1</sub> = ''α''<sup>2</sup> + ''α'' − 1}} and {{math|1=''ε''<sub>2</sub> = 2 − ''α''<sup>2</sup>}}.<ref>{{harvnb|Cohen|1993|loc=Table B.4}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)