Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet–Jordan test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Jordan test for Fourier integrals == For the [[Fourier transform]] on the real line, there is a version of the test as well.<ref>{{citation|author=[[E. C. Titchmarsh]]|title=Introduction to the theory of Fourier integrals|year=1948|page=13|publisher=Oxford Clarendon Press}}.</ref> Suppose that <math>f(x)</math> is in <math>L^1(-\infty,\infty)</math> and of bounded variation in a neighborhood of the point <math>x</math>. Then <math display="block">\frac1\pi\lim_{M\to\infty}\int_0^{M}du\int_{-\infty}^\infty f(t)\cos u(x-t)\,dt = \lim_{\varepsilon\to 0}\frac{f(x+\varepsilon)+f(x-\varepsilon)}{2}.</math> If <math>f</math> is continuous in an open interval, then the integral on the left-hand side converges uniformly in the interval, and the limit on the right-hand side is <math>f(x)</math>. This version of the test (although not satisfying modern demands for rigor) is historically prior to Dirichlet, being due to [[Joseph Fourier]].<ref name="Fourier series and Fourier integrals">{{citation|author=[[Jaak Peetre]]|title=On Fourier's discovery of Fourier series and Fourier integrals|year=2000|url=https://web.archive.org/web/20221201121132/https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d72e7ff6baf9008d523a192bab2e3400982389d3}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)