Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Probability density function=== [[Image:LogDirichletDensity-alpha 0.3 to alpha 2.0.gif|thumb|right|250px|Illustrating how the log of the density function changes when {{math|1=''K'' = 3}} as we change the vector {{math|'''Ξ±'''}} from {{math|1='''Ξ±''' = (0.3, 0.3, 0.3)}} to {{math|(2.0, 2.0, 2.0)}}, keeping all the individual <math>\alpha_i</math>'s equal to each other.]] The Dirichlet distribution of order {{math|''K'' β₯ 2}} with parameters {{math|''Ξ±''{{sub|1}}, ..., ''Ξ±''{{sub|''K''}} > 0}} has a [[probability density function]] with respect to [[Lebesgue measure]] on the [[Euclidean space]] {{math|'''R'''{{isup|''K''β1}}}} given by <math display=block>f \left(x_1,\ldots, x_{K}; \alpha_1,\ldots, \alpha_K \right) = \frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1}</math> where <math>\{x_k\}_{k=1}^{k=K}</math> belong to the standard <math>K-1</math> [[simplex]], or in other words: <math display=block>\sum_{i=1}^{K} x_i = 1 \mbox{ and } x_i \in \left[0,1\right] \mbox{ for all } i \in \{1,\dots,K\}\,.</math> The [[normalizing constant]] is the multivariate [[beta function]], which can be expressed in terms of the [[gamma function]]: <math display=block>\mathrm{B}(\boldsymbol\alpha) = \frac{\prod\limits_{i=1}^K \Gamma(\alpha_i)}{\Gamma\left(\sum\limits_{i=1}^K \alpha_i\right)},\qquad\boldsymbol{\alpha}=(\alpha_1,\ldots,\alpha_K).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)