Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divide-and-conquer eigenvalue algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Divide== The ''divide'' part of the divide-and-conquer algorithm comes from the realization that a tridiagonal matrix is "almost" block diagonal. <!-- For original TeX, see image description page --> :[[Image:Almost block diagonal.png]] The size of submatrix <math>T_{1}</math> we will call <math>n \times n</math>, and then <math>T_{2}</math> is <math>(m - n) \times (m - n)</math>. <math>T</math> is almost block diagonal regardless of how <math>n</math> is chosen. For efficiency we typically choose <math>n \approx m/2</math>. We write <math>T</math> as a block diagonal matrix, plus a [[Rank (linear algebra)|rank-1]] correction: <!-- For original TeX, see image description page --> :[[Image:Block diagonal plus correction.png]] The only difference between <math>T_{1}</math> and <math>\hat{T}_{1}</math> is that the lower right entry <math>t_{nn}</math> in <math>\hat{T}_{1}</math> has been replaced with <math>t_{nn} - \beta</math> and similarly, in <math>\hat{T}_{2}</math> the top left entry <math>t_{n+1,n+1}</math> has been replaced with <math>t_{n+1,n+1} - \beta</math>. The remainder of the divide step is to solve for the eigenvalues (and if desired the eigenvectors) of <math>\hat{T}_{1}</math> and <math>\hat{T}_{2}</math>, that is to find the [[diagonalizable matrix|diagonalization]]s <math>\hat{T}_{1} = Q_{1} D_{1} Q_{1}^{T}</math> and <math>\hat{T}_{2} = Q_{2} D_{2} Q_{2}^{T}</math>. This can be accomplished with recursive calls to the divide-and-conquer algorithm, although practical implementations often switch to the QR algorithm for small enough submatrices.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)