Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Double Mersenne number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Double Mersenne primes == {{Infobox integer sequence | name = Double Mersenne primes | terms_number = 4 | con_number = 4 | first_terms = 7, 127, 2147483647 | largest_known_term = 170141183460469231731687303715884105727 | OEIS = A077586 | OEIS_name = a(''n'') = 2^(2^prime(''n'') β 1) β 1 }} A double Mersenne number that is [[prime number|prime]] is called a '''double Mersenne prime'''. Since a Mersenne number ''M''<sub>''p''</sub> can be prime only if ''p'' is prime, (see [[Mersenne prime]] for a proof), a double Mersenne number <math>M_{M_p}</math> can be prime only if ''M''<sub>''p''</sub> is itself a Mersenne prime. For the first values of ''p'' for which ''M''<sub>''p''</sub> is prime, <math>M_{M_{p}}</math> is known to be prime for ''p'' = 2, 3, 5, 7 while explicit factors of <math>M_{M_{p}}</math> have been found for ''p'' = 13, 17, 19, and mersenne prime 31. {| class="wikitable" |- ! <math>p</math> !! <math>M_{p} = 2^p-1</math> !! <math>M_{M_{p}} = 2^{2^p-1}-1</math> !! factorization of <math>M_{M_{p}}</math> |- | 2 || [[3 (number)|3]] || prime || 7 |- | 3 || [[7 (number)|7]] || prime (triple) || 127 |- | 5 || [[31 (number)|31]] || prime || 2147483647 |- | 7 || [[127 (number)|127]] || prime (quadruple) || 170141183460469231731687303715884105727 |- | 11 || not prime || not prime || 47 Γ 131009 Γ 178481 Γ 724639 Γ 2529391927 Γ 70676429054711 Γ 618970019642690137449562111 Γ ... |- | 13 || [[8191 (number)|8191]] || not prime || 338193759479 Γ 210206826754181103207028761697008013415622289 Γ ... |- | 17 || [[131071 (number)|131071]] || not prime || 231733529 Γ 64296354767 Γ ... |- | 19 || [[524287 (number)|524287]] || not prime || 62914441 Γ 5746991873407 Γ 2106734551102073202633922471 Γ 824271579602877114508714150039 Γ 65997004087015989956123720407169 Γ 4565880376922810768406683467841114102689 Γ ... |- | 23 || not prime || not prime || 2351 Γ 4513 Γ 13264529 Γ 76899609737 Γ ... |- | 29 || not prime || not prime || 1399 Γ 2207 Γ 135607 Γ 622577 Γ 16673027617 Γ 4126110275598714647074087 Γ ... |- | 31 || [[2147483647 (number)|2147483647]] || not prime (triple mersenne number) || 295257526626031 Γ 87054709261955177 Γ 242557615644693265201 Γ 178021379228511215367151 Γ ... |- | 37 || not prime || not prime || |- | 41 || not prime || not prime || |- | 43 || not prime || not prime || |- | 47 || not prime || not prime || |- | 53 || not prime || not prime || |- | 59 || not prime || not prime || |- | 61 || [[2305843009213693951 (number)|2305843009213693951]] || unknown || |} Thus, the smallest candidate for the next double Mersenne prime is <math>M_{M_{61}}</math>, or 2<sup>2305843009213693951</sup> β 1. Being approximately 1.695{{e|694127911065419641}}, this number is far too large for any currently known [[primality test]]. It has no prime factor below 1 Γ 10<sup>36</sup>.<ref>{{cite web |title=Double Mersenne 61 factoring status |url=http://www.doublemersennes.org/mm61.php |website=www.doublemersennes.org |access-date=31 March 2022}}</ref> There are probably no other double Mersenne primes than the four known.<ref name="Caldwell"/><ref>[https://www.ams.org/journals/mcom/1955-09-051/S0025-5718-1955-0071444-6/S0025-5718-1955-0071444-6.pdf I. J. Good. Conjectures concerning the Mersenne numbers. Mathematics of Computation vol. 9 (1955) p. 120-121] [retrieved 2012-10-19]</ref> Smallest prime factor of <math>M_{M_{p}}</math> (where ''p'' is the ''n''th prime) are :7, 127, 2147483647, 170141183460469231731687303715884105727, 47, 338193759479, 231733529, 62914441, 2351, 1399, 295257526626031, 18287, 106937, 863, 4703, 138863, 22590223644617, ... (next term is > 1 Γ 10<sup>36</sup>) {{OEIS|id=A309130}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)