Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Double pendulum
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Lagrangian=== The [[Lagrangian mechanics|Lagrangian]] is given by <math display="block">\begin{align} L &= \text{kinetic energy} - \text{potential energy} \\ &= \tfrac{1}{2} m \left ( v_1^2 + v_2^2 \right ) + \tfrac{1}{2} I \left ( \dot\theta_1^2 + \dot\theta_2^2 \right ) - m g \left ( y_1 + y_2 \right ) \\ &= \tfrac{1}{2} m \left ( \dot x_1^2 + \dot y_1^2 + \dot x_2^2 + \dot y_2^2 \right ) + \tfrac{1}{2} I \left ( \dot\theta_1^2 + \dot\theta_2^2 \right ) - m g \left ( y_1 + y_2 \right ) \end{align}</math> The first term is the ''linear'' [[kinetic energy]] of the [[center of mass]] of the bodies and the second term is the ''rotational'' kinetic energy around the center of mass of each rod. The last term is the [[potential energy]] of the bodies in a uniform gravitational field. The [[Newton's notation|dot-notation]] indicates the [[time derivative]] of the variable in question. Using the values of <math>x_1</math> and <math>y_1</math> defined above, we have <math display="block"> \begin{align} \dot x_1 &= \dot \theta_1 \left(\tfrac{1}{2}\ell \cos \theta_1 \right) \\[1ex] \dot y_1 &= \dot \theta_1 \left(\tfrac{1}{2} \ell \sin \theta_1 \right) \end{align} </math> which leads to <math display="block"> v_1^2 = \dot x_1^2 + \dot y_1^2 = \tfrac{1}{4} \dot \theta_1^2 \ell^2 \left(\cos^2 \theta_1 + \sin^2 \theta_1 \right) = \tfrac{1}{4} \ell^2 \dot \theta_1^2 . </math> Similarly, for <math>x_2</math> and <math>y_2</math> we have <math display="block"> \begin{align} \dot x_2 &= \ell \left(\dot \theta_1 \cos \theta_1 + \tfrac{1}{2} \dot \theta_2 \cos \theta_2 \right) \\ \dot y_2 &= \ell \left(\dot \theta_1 \sin \theta_1 + \tfrac{1}{2} \dot \theta_2 \sin \theta_2 \right) \end{align} </math> and therefore <math display="block"> \begin{align} v_2^2 &= \dot x_2^2 + \dot y_2^2 \\[1ex] &= \ell^2 \left( \dot \theta_1^2 \cos^2 \theta_1 + \dot \theta_1^2 \sin^2 \theta_1 + \tfrac{1}{4} \dot \theta_2^2 \cos^2 \theta_2 + \tfrac{1}{4} \dot \theta_2^2 \sin^2 \theta_2 + \dot \theta_1 \dot \theta_2 \cos \theta_1 \cos \theta_2 + \dot \theta_1 \dot \theta_2 \sin \theta_1 \sin \theta_2 \right) \\[1ex] &= \ell^2 \left( \dot \theta_1^2 + \tfrac{1}{4} \dot \theta_2^2 + \dot \theta_1 \dot \theta_2 \cos \left(\theta_1 - \theta_2 \right) \right). \end{align} </math> Substituting the coordinates above into the definition of the Lagrangian, and rearranging the equation, gives <math display="block"> \begin{align} L &= \tfrac{1}{2} m \ell^2 \left( \dot \theta_1^2 + \tfrac{1}{4} \dot \theta_1^2 + \tfrac{1}{4} \dot \theta_2^2 + \dot \theta_1 \dot \theta_2 \cos \left(\theta_1 - \theta_2 \right) \right) + \tfrac{1}{24} m \ell^2 \left( \dot \theta_1^2 + \dot \theta_2^2 \right) - m g \left(y_1 + y_2 \right) \\[1ex] &= \tfrac{1}{6} m \ell^2 \left ( \dot \theta_2^2 + 4 \dot \theta_1^2 + 3 {\dot \theta_1} {\dot \theta_2} \cos (\theta_1-\theta_2) \right) + \tfrac{1}{2} m g \ell \left ( 3 \cos \theta_1 + \cos \theta_2 \right ). \end{align} </math> The equations of motion can now be derived using the [[Euler–Lagrange equation]]s, which are given by <math display="block"> \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_i} - \frac{\partial L}{\partial \theta_i} = 0, \quad i = 1,2. </math> We begin with the equation of motion for <math>\theta_1</math>. The derivatives of the Lagrangian are given by <math display="block"> \frac{\partial L}{\partial \theta_1} = -\tfrac{1}{2} m \ell^2 \dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2) - \tfrac{3}{2} mg\ell \sin\theta_1 </math> and <math display="block"> \frac{\partial L}{\partial \dot{\theta}_1} = \tfrac{4}{3} m\ell^2 \dot{\theta}_1 + \tfrac{1}{2} m\ell^2 \dot{\theta}_2 \cos(\theta_1-\theta_2). </math> Thus <math display="block"> \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_1} = \tfrac{4}{3} m\ell^2 \ddot{\theta}_1 + \tfrac{1}{2} m\ell^2 \ddot{\theta}_2 \cos(\theta_1-\theta_2) - \tfrac{1}{2} m\ell^2 \dot{\theta}_2(\dot{\theta}_1 - \dot{\theta}_2) \sin(\theta_1 - \theta_2). </math> Combining these results and simplifying yields the first equation of motion, <math display="block"> \tfrac{4}{3} \ell \ddot{\theta}_1 + \tfrac{1}{2} \ell \ddot{\theta}_2 \cos(\theta_1 - \theta_2) + \tfrac{1}{2} \ell \dot{\theta}_2^2 \sin(\theta_1-\theta_2) + \tfrac{3}{2} g \sin\theta_1 = 0. </math> Similarly, the derivatives of the Lagrangian with respect to <math>\theta_2</math> and <math>\dot{\theta}_2</math> are given by <math display="block"> \frac{\partial L}{\partial \theta_2} = \tfrac{1}{2} m \ell^2 \dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2) - \tfrac{1}{2} mg\ell \sin\theta_2 </math> and <math display="block"> \frac{\partial L}{\partial \dot{\theta}_2} = \tfrac{1}{3} m\ell^2 \dot{\theta}_2 + \tfrac{1}{2} m\ell^2 \dot{\theta}_1 \cos(\theta_1-\theta_2). </math> Thus <math display="block"> \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_2} = \tfrac{1}{3} m\ell^2 \ddot{\theta}_2 + \tfrac{1}{2} m\ell^2 \ddot{\theta}_1 \cos(\theta_1-\theta_2) - \tfrac{1}{2} m\ell^2 \dot{\theta}_1(\dot{\theta}_1 - \dot{\theta}_2) \sin(\theta_1 - \theta_2). </math> Plugging these results into the Euler-Lagrange equation and simplifying yields the second equation of motion, <math display="block"> \tfrac{1}{3} \ell \ddot{\theta}_2 + \tfrac{1}{2} \ell \ddot{\theta}_1 \cos(\theta_1 - \theta_2) - \tfrac{1}{2} \ell \dot{\theta}_1^2 \sin(\theta_1-\theta_2) + \tfrac{1}{2} g \sin\theta_2 = 0. </math> No [[closed form expression|closed form]] solutions for <math>\theta_1</math> and <math>\theta_2</math> as functions of time are known, therefore the system can only be solved [[numerical integration|numerically]], using the [[Runge–Kutta methods|Runge Kutta method]] or [[numerical methods for ordinary differential equations|similar techniques]]. [[File:Double-pendulum.png|thumb|Parametric plot for the time evolution of the angles of a double pendulum. Note that the graph resembles [[Brownian motion]].]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)