Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dual lattice
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== We list some elementary properties of the dual lattice: * If <math display = "inline"> B = [b_1, \ldots, b_n] </math> is a matrix giving a basis for the lattice <math display = "inline"> L </math>, then <math display = "inline"> z \in \text{span}(L) </math> satisfies <math display = "inline"> z \in L^* \iff b^T_i z \in \mathbb{Z}, i = 1, \ldots, n \iff B^T z \in \mathbb{Z}^n</math>. * If <math display = "inline"> B </math> is a matrix giving a basis for the lattice <math display = "inline"> L </math>, then <math display = "inline"> B (B^T B)^{-1} </math> gives a basis for the dual lattice. If <math display = "inline"> L </math> is full rank <math display = "inline"> B^{-T} </math> gives a basis for the dual lattice: <math display = "inline"> z \in L^* \iff B^T z \in \mathbb{Z}^n \iff z \in B^{-T} \mathbb{Z}^n </math>. * The previous fact shows that <math display = "inline"> (L^*)^* = L </math>. This equality holds under the usual identifications of a vector space with its double dual, or in the setting where the inner product has identified <math display = "inline"> \mathbb{R}^n </math> with its dual. * Fix two lattices <math display = "inline"> L,M </math>. Then <math display = "inline"> L \subseteq M </math> if and only if <math display = "inline"> L^* \supseteq M^* </math>. * The determinant of a lattice is the reciprocal of the determinant of its dual: <math display = "inline"> \text{det}(L^*) = \frac{1}{\text{det}(L)} </math> * If <math display = "inline"> q </math> is a nonzero scalar, then <math display = "inline"> (qL)^* = \frac{1}{q} L^* </math>. * If <math display = "inline"> R </math> is a rotation matrix, then <math display = "inline"> (RL)^* = R L^* </math>. * A lattice <math display="inline"> L </math> is said to be integral if <math display = "inline"> x \cdot y \in \mathbb{Z} </math> for all <math display="inline"> x,y \in L </math>. Assume that the lattice <math display="inline"> L </math> is full rank. Under the identification of Euclidean space with its dual, we have that <math display="inline"> L \subseteq L^* </math> for integral lattices <math display="inline"> L </math>. Recall that, if <math display="inline"> L' \subseteq L </math> and <math display="inline"> |L/L'| <\infty </math>, then <math display="inline"> \text{det}(L') = \text{det}(L) | L/L'| </math>. From this it follows that for an integral lattice, <math display="inline"> \text{det}(L)^2 = | L^* / L| </math>. * An integral lattice is said to be ''unimodular'' if <math display="inline"> L = L^*</math>, which, by the above, is equivalent to <math display="inline"> \text{det}(L) = 1. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)