Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dynamic mechanical analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Viscoelastic properties of materials=== [[Image:Dynamic+Tests+Setup+Chem+538.jpg|thumb|325px|Figure 1. A typical DMA tester with grips to hold the sample and an environmental chamber to provide different temperature conditions. A sample is mounted on the grips and the environmental chamber can slide over to enclose the sample.]] Polymers composed of long molecular chains have unique viscoelastic properties, which combine the characteristics of [[Elasticity (physics)|elastic solid]]s and [[Newtonian fluid]]s. The classical theory of elasticity describes the mechanical properties of elastic solids where stress is proportional to strain in small deformations. Such response to stress is independent of [[strain rate]]. The classical theory of hydrodynamics describes the properties of viscous fluid, for which stress response depends on strain rate.<ref name="Ferry1980">{{cite book|last=Ferry|first=J.D.|title=Viscoelastic properties of polymers|publisher=Wiley|year=1980|edition=3}}</ref> This solidlike and liquidlike behaviour of polymers can be modelled mechanically with combinations of springs and dashpots, making for both elastic and viscous behaviour of viscoelastic materials such as bitumen.<ref name="Ferry1991">{{cite journal|last=Ferry|first=J.D|year=1991|title=Some reflections on the early development of polymer dynamics: Viscoelasticity, dielectric dispersion and self-diffusion|doi=10.1021/ma00019a001|journal=Macromolecules|volume=24|issue=19|pages=5237β5245|bibcode = 1991MaMol..24.5237F }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)