Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dynamic random-access memory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Precursors === [[File:Original 1T1C DRAM design.svg|thumb|upright=1.6|A schematic drawing depicting the cross-section of the original one-transistor, one-capacitor [[NMOS logic|NMOS]] DRAM cell. It was patented in 1968.]] The [[cryptanalysis|cryptanalytic]] machine code-named ''Aquarius'' used at [[Bletchley Park]] during [[World War II]] incorporated a hard-wired dynamic memory. Paper tape was read and the characters on it "were remembered in a dynamic store." The store used a large bank of capacitors, which were either charged or not, a charged capacitor representing cross (1) and an uncharged capacitor dot (0). Since the charge gradually leaked away, a periodic pulse was applied to top up those still charged (hence the term 'dynamic')".<ref>{{cite book |first1=B. Jack |last1=Copeland |title=Colossus: The secrets of Bletchley Park's code-breaking computers |url=https://books.google.com/books?id=YiiQDwAAQBAJ&pg=PA301 |date=2010 |publisher=Oxford University Press |isbn=978-0-19-157366-8 |page=301}}</ref> In November 1965, [[Toshiba]] introduced a bipolar dynamic RAM for its [[electronic calculator]] Toscal BC-1411.<ref name="toscal">{{cite web|url=http://www.oldcalculatormuseum.com/s-toshbc1411.html|title=Spec Sheet for Toshiba "TOSCAL" BC-1411|website=www.oldcalculatormuseum.com|access-date=8 May 2018|url-status=live|archive-url=https://web.archive.org/web/20170703071307/http://www.oldcalculatormuseum.com/s-toshbc1411.html|archive-date=3 July 2017}}</ref><ref>{{cite web |url=http://collection.sciencemuseum.org.uk/objects/co8406093/toscal-bc-1411-calculator-with-electronic-calculator |title=Toscal BC-1411 calculator |archive-url=https://web.archive.org/web/20170729145228/http://collection.sciencemuseum.org.uk/objects/co8406093/toscal-bc-1411-calculator-with-electronic-calculator |archive-date=2017-07-29 |publisher=[[Science Museum, London]]}}</ref><ref>{{cite web |url=http://www.oldcalculatormuseum.com/toshbc1411.html |title=Toshiba "Toscal" BC-1411 Desktop Calculator |archive-url=https://web.archive.org/web/20070520202433/http://www.oldcalculatormuseum.com/toshbc1411.html |archive-date=2007-05-20}}</ref> In 1966, Tomohisa Yoshimaru and Hiroshi Komikawa from Toshiba applied for a Japanese patent of a memory circuit composed of several transistors and a capacitor, in 1967 they applied for a patent in the US.<ref>{{cite web |title=Memory Circuit |url= https://patents.google.com/patent/US3550092A/en?q=(memory+)&assignee=Toshiba+Corp&before=priority:19670101&after=priority:19640101|website=[[Google Patents]] |access-date=18 June 2023}}</ref> The earliest forms of DRAM mentioned above used [[bipolar transistors]]. While it offered improved performance over [[magnetic-core memory]], bipolar DRAM could not compete with the lower price of the then-dominant magnetic-core memory.<ref>{{cite web |title=1966: Semiconductor RAMs Serve High-speed Storage Needs |url=https://www.computerhistory.org/siliconengine/semiconductor-rams-serve-high-speed-storage-needs/ |website=Computer History Museum}}</ref> Capacitors had also been used for earlier memory schemes, such as the drum of the [[Atanasoff–Berry Computer]], the [[Williams tube]] and the [[Selectron tube]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)