Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Effective field theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== ===Fermi theory of beta decay=== The best-known example of an effective field theory is the [[Fermi's interaction|Fermi theory of beta decay]]. This theory was developed during the early study of weak decays of [[Atomic nucleus|nuclei]] when only the [[hadron]]s and [[lepton]]s undergoing weak decay were known. The typical [[elementary particle reaction|reactions]] studied were: ::<math> \begin{align} n & \to p+e^-+\overline\nu_e \\ \mu^- & \to e^-+\overline\nu_e+\nu_\mu. \end{align} </math> This theory posited a pointlike interaction between the four [[fermion]]s involved in these reactions. The theory had great [[phenomenology (particle physics)|phenomenological]] success and was eventually understood to arise from the [[gauge theory]] of [[electroweak interaction]]s, which forms a part of the [[standard model]] of particle physics. In this more fundamental theory, the interactions are mediated by a [[flavour (particle physics)|flavour]]-changing [[gauge boson]], the W<sup>Β±</sup>. The immense success of the Fermi theory was because the W particle has mass of about 80 [[GeV]], whereas the early experiments were all done at an energy scale of less than 10 [[MeV]]. Such a separation of scales, by over 3 orders of magnitude, has not been met in any other situation as yet. ===BCS theory of superconductivity=== Another famous example is the [[BCS theory]] of [[superconductivity]]. Here the underlying theory is the theory of [[electron]]s in a [[metal]] interacting with lattice vibrations called [[phonon]]s. The phonons cause attractive interactions between some electrons, causing them to form [[Cooper pair]]s. The length scale of these pairs is much larger than the wavelength of phonons, making it possible to neglect the dynamics of phonons and construct a theory in which two electrons effectively interact at a point. This theory has had remarkable success in describing and predicting the results of experiments on superconductivity. ===Gravitational field theories === [[General relativity]] (GR) itself is expected to be the low energy effective field theory of a full theory of [[quantum gravity]], such as [[string theory]] or [[loop quantum gravity]]. The expansion scale is the [[Planck mass]]. Effective field theories have also been used to simplify problems in general relativity, in particular in calculating the [[gravitational wave]] signature of inspiralling finite-sized objects.<ref>{{Cite journal |arxiv = hep-th/0409156|last1 = Goldberger|first1 = Walter|title = An Effective Field Theory of Gravity for Extended Objects|journal = Physical Review D|volume = 73|issue = 10|last2 = Rothstein|first2 = Ira|year = 2004| page=104029 |doi = 10.1103/PhysRevD.73.104029|s2cid = 54188791}}</ref> The most common EFT in GR is non-relativistic general relativity (NRGR),<ref>{{Cite web |last1=Porto |first1=Rafael A. |last2=Rothstein |first2=Ira |last3=Goldberger |first3=Walter |title=EFT meets GR |url=https://online.kitp.ucsb.edu/online/numrel-m08/buonanno/pdf1/Porto_NumRelData_KITP.pdf |access-date=3 November 2023 |website=online.kitp.ucsb.edu}}</ref><ref>{{Cite journal |arxiv = 0712.4116|last1 = Kol|first1 = Barak|title = Non-Relativistic Gravitation: From Newton to Einstein and Back|journal = Classical and Quantum Gravity|volume = 25|issue = 14|pages = 145011|last2 = Smolkin|first2 = Lee|year = 2008|doi = 10.1088/0264-9381/25/14/145011|bibcode = 2008CQGra..25n5011K|s2cid = 119216835}}</ref><ref>{{Cite journal |arxiv = gr-qc/0511061|last1 = Porto|first1 = Rafael A|title = Post-Newtonian corrections to the motion of spinning bodies in NRGR|journal = Physical Review D|volume = 73|issue = 104031|pages = 104031|year = 2006|doi = 10.1103/PhysRevD.73.104031|s2cid = 119377563}}</ref> which is similar to the [[post-Newtonian expansion]].<ref>{{Cite journal |doi = 10.1103/PhysRevD.88.104037|title = Theory of post-Newtonian radiation and reaction|journal = Physical Review D|volume = 88|issue = 10|pages = 104037|year = 2013|last1 = Birnholtz|first1 = Ofek|last2 = Hadar|first2 = Shahar|last3 = Kol|first3 = Barak|arxiv = 1305.6930|bibcode = 2013PhRvD..88j4037B|s2cid = 119170985}}</ref> Another common GR EFT is the extreme mass ratio (EMR), which in the context of the inspiralling problem is called [[extreme mass ratio inspiral]]. ===Other examples=== Presently, effective field theories are written for many situations. *One major branch of [[nuclear physics]] is [[quantum hadrodynamics]], where the interactions of [[hadron]]s are treated as a field theory, which should be derivable from the underlying theory of [[quantum chromodynamics]] (QCD). Quantum hadrodynamics is the theory of the [[nuclear force]], similarly to quantum chromodynamics being the theory of the [[strong interaction]] and quantum electrodynamics being the theory of the [[electromagnetic force]]. Due to the smaller separation of length scales here, this effective theory has some classificatory power, but not the spectacular success of the Fermi theory. *In [[particle physics]] the effective field theory of QCD called [[chiral perturbation theory]] has had better success.<ref>{{Cite journal |arxiv = hep-ph/9311274|last1 = Leutwyler|first1 = H|title = On the Foundations of Chiral Perturbation Theory|journal = Annals of Physics|volume = 235|pages = 165β203|year = 1994|issue = 1|doi = 10.1006/aphy.1994.1094|bibcode = 1994AnPhy.235..165L|s2cid = 16739698}}</ref> This theory deals with the interactions of [[hadron]]s with [[pion]]s or [[kaon]]s, which are the [[Goldstone boson]]s of [[spontaneous chiral symmetry breaking]]. The expansion parameter is the [[pion]] energy/momentum. *For [[hadron]]s containing one heavy [[quark]] (such as the [[bottom quark|bottom]] or [[Charm quark|charm]]), an effective field theory which expands in powers of the quark mass, called the [[heavy quark effective theory]] (HQET), has been found useful. *For [[hadron]]s containing two heavy quarks, an effective field theory which expands in powers of the [[relative velocity]] of the heavy quarks, called non-relativistic QCD (NRQCD), has been found useful, especially when used in conjunctions with [[lattice QCD]]. *For [[hadron]] reactions with light energetic ([[collinear]]) particles, the interactions with low-energetic (soft) degrees of freedom are described by the [[soft-collinear effective theory]] (SCET). *Much of [[condensed matter physics]] consists of writing effective field theories for the particular property of matter being studied. *Dissipationless [[hydrodynamics]] can also be treated using effective field theories.<ref>{{Cite journal |arxiv = 1211.6461|last1 = Endlich|first1 = Solomon|title = Dissipation in the effective field theory for hydrodynamics: First order effects|journal = Physical Review D|volume = 88|issue = 10|pages = 105001|last2 = Nicolis|first2 = Alberto|last3 = Porto|first3 = Rafael|last4 = Wang|first4 = Junpu|year = 2013|doi = 10.1103/PhysRevD.88.105001|bibcode = 2013PhRvD..88j5001E|s2cid = 118441607}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)