Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Einstein tensor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Explicit form == The Ricci tensor depends only on the metric tensor, so the Einstein tensor can be defined directly with just the metric tensor. However, this expression is complex and rarely quoted in textbooks. The complexity of this expression can be shown using the formula for the Ricci tensor in terms of [[Christoffel symbols]]: <math display="block">\begin{align} G_{\alpha\beta} &= R_{\alpha\beta} - \frac{1}{2} g_{\alpha\beta} R \\ &= R_{\alpha\beta} - \frac{1}{2} g_{\alpha\beta} g^{\gamma\zeta} R_{\gamma\zeta} \\ &= \left(\delta^\gamma_\alpha \delta^\zeta_\beta - \frac{1}{2} g_{\alpha\beta}g^{\gamma\zeta}\right) R_{\gamma\zeta} \\ &= \left(\delta^\gamma_\alpha \delta^\zeta_\beta - \frac{1}{2} g_{\alpha\beta}g^{\gamma\zeta}\right)\left(\Gamma^\epsilon{}_{\gamma\zeta,\epsilon} - \Gamma^\epsilon{}_{\gamma\epsilon,\zeta} + \Gamma^\epsilon{}_{\epsilon\sigma} \Gamma^\sigma{}_{\gamma\zeta} - \Gamma^\epsilon{}_{\zeta\sigma} \Gamma^\sigma{}_{\epsilon\gamma}\right), \\[2pt] G^{\alpha\beta} &= \left(g^{\alpha\gamma} g^{\beta\zeta} - \frac{1}{2} g^{\alpha\beta}g^{\gamma\zeta}\right)\left(\Gamma^\epsilon{}_{\gamma\zeta,\epsilon} - \Gamma^\epsilon{}_{\gamma\epsilon,\zeta} + \Gamma^\epsilon{}_{\epsilon\sigma} \Gamma^\sigma{}_{\gamma\zeta} - \Gamma^\epsilon{}_{\zeta\sigma} \Gamma^\sigma{}_{\epsilon\gamma}\right), \end{align}</math> where <math>\delta^\alpha_\beta</math> is the [[Kronecker tensor]] and the Christoffel symbol <math>\Gamma^\alpha{}_{\beta\gamma}</math> is defined as <math display="block">\Gamma^\alpha{}_{\beta\gamma} = \frac{1}{2} g^{\alpha\epsilon}\left(g_{\beta\epsilon,\gamma} + g_{\gamma\epsilon,\beta} - g_{\beta\gamma,\epsilon}\right).</math> and terms of the form <math>\Gamma ^\alpha _{\beta \gamma, \mu}</math> or <math>g_{\beta\gamma,\mu}</math> represent partial derivatives in the ''ΞΌ''-direction, e.g.: <math display="block">\Gamma^\alpha{}_{\beta\gamma, \mu} = \partial _\mu \Gamma^\alpha{}_{\beta\gamma} = \frac{\partial}{\partial x^\mu} \Gamma^\alpha{}_{\beta\gamma}</math> Before cancellations, this formula results in <math>2 \times (6 + 6 + 9 + 9) = 60</math> individual terms. Cancellations bring this number down somewhat.<!-- exactly how much? --> In the special case of a locally [[inertial reference frame]] near a point, the first derivatives of the metric tensor vanish and the component form of the Einstein tensor is considerably simplified: <math display="block">\begin{align} G_{\alpha\beta} & = g^{\gamma\mu}\left[ g_{\gamma[\beta,\mu]\alpha} + g_{\alpha[\mu,\beta]\gamma} - \frac{1}{2} g_{\alpha\beta} g^{\epsilon\sigma} \left(g_{\epsilon[\mu,\sigma]\gamma} + g_{\gamma[\sigma,\mu]\epsilon}\right)\right] \\ & = g^{\gamma\mu} \left(\delta^\epsilon_\alpha \delta^\sigma_\beta - \frac{1}{2} g^{\epsilon\sigma}g_{\alpha\beta}\right)\left(g_{\epsilon[\mu,\sigma]\gamma} + g_{\gamma[\sigma,\mu]\epsilon}\right), \end{align}</math> where square brackets conventionally denote [[Antisymmetric tensor|antisymmetrization]] over bracketed indices, i.e. <math display="block">g_{\alpha[\beta,\gamma]\epsilon} \, = \frac{1}{2} \left(g_{\alpha\beta,\gamma\epsilon} - g_{\alpha\gamma,\beta\epsilon}\right).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)