Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ellipse
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== In Cartesian coordinates == [[File:Ellipse-param.svg|thumb|Shape parameters:{{unbulleted list | ''a'': semi-major axis, | ''b'': semi-minor axis, | ''c'': linear eccentricity, | ''p'': semi-latus rectum (usually <math>\ell</math>). }}]] === Standard equation === The standard form of an ellipse in Cartesian coordinates assumes that the origin is the center of the ellipse, the ''x''-axis is the major axis, and: {{unbulleted list | style = padding-left:1.5em | the foci are the points <math>F_1 = (c,\, 0),\ F_2=(-c,\, 0)</math>, | the vertices are <math>V_1 = (a,\, 0),\ V_2 = (-a,\, 0)</math>. }} For an arbitrary point <math>(x,y)</math> the distance to the focus <math>(c,0)</math> is <math display="inline">\sqrt{(x - c)^2 + y^2 }</math> and to the other focus <math display="inline">\sqrt{(x + c)^2 + y^2}</math>. Hence the point <math>(x,\, y)</math> is on the ellipse whenever: <math display="block">\sqrt{(x - c)^2 + y^2} + \sqrt{(x + c)^2 + y^2} = 2a\ .</math> Removing the [[radical expression|radicals]] by suitable squarings and using <math>b^2 = a^2-c^2</math> (see diagram) produces the standard equation of the ellipse:<ref name="mathworld">{{cite web | url=http://mathworld.wolfram.com/Ellipse.html |title=Ellipse - from Wolfram MathWorld |publisher=Mathworld.wolfram.com |date=2020-09-10 |access-date=2020-09-10}}</ref> <math display="block">\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,</math> or, solved for ''y'': <math display="block">y = \pm\frac{b}{a}\sqrt{a^2 - x^2} = \pm \sqrt{\left(a^2 - x^2\right)\left(1 - e^2\right)}.</math> The width and height parameters <math>a,\; b</math> are called the [[semi-major and semi-minor axes]]. The top and bottom points <math>V_3 = (0,\, b),\; V_4 = (0,\, -b)</math> are the ''co-vertices''. The distances from a point <math>(x,\, y)</math> on the ellipse to the left and right foci are <math>a + ex</math> and <math>a - ex</math>. It follows from the equation that the ellipse is ''symmetric'' with respect to the coordinate axes and hence with respect to the origin. === Parameters === ==== Principal axes ==== Throughout this article, the [[semi-major and semi-minor axes]] are denoted <math>a</math> and <math>b</math>, respectively, i.e. <math>a \ge b > 0 \ .</math> In principle, the canonical ellipse equation <math>\tfrac{x^2}{a^2} + \tfrac{y^2}{b^2} = 1 </math> may have <math>a < b</math> (and hence the ellipse would be taller than it is wide). This form can be converted to the standard form by transposing the variable names <math>x</math> and <math> y</math> and the parameter names <math>a</math> and <math> b.</math> ==== Linear eccentricity ==== This is the distance from the center to a focus: <math>c = \sqrt{a^2 - b^2}</math>. ==== Eccentricity ==== [[File:Pythagorean_theorem_ellipse_eccentricity.svg|thumb|upright|Eccentricity ''e'' in terms of semi-major ''a'' and semi-minor ''b'' axes: {{nowrap|1=''e''² + (''b/a'')² = 1}}]] The eccentricity can be expressed as: <math display="block">e = \frac{c}{a} = \sqrt{1 - \left(\frac{b}{a}\right)^2},</math> assuming <math>a > b.</math> An ellipse with equal axes (<math>a = b</math>) has zero eccentricity, and is a circle. ==== Semi-latus rectum ==== The length of the chord through one focus, perpendicular to the major axis, is called the ''latus rectum''. One half of it is the ''semi-latus rectum'' <math>\ell</math>. A calculation shows:<ref>{{harvtxt|Protter|Morrey|1970|pp=304,APP-28}}</ref> <math display="block">\ell = \frac{b^2}a = a \left(1 - e^2\right).</math> The semi-latus rectum <math>\ell</math> is equal to the [[radius of curvature]] at the vertices (see section [[#Curvature|curvature]]). === Tangent === An arbitrary line <math>g</math> intersects an ellipse at 0, 1, or 2 points, respectively called an ''exterior line'', ''tangent'' and ''secant''. Through any point of an ellipse there is a unique tangent. The tangent at a point <math>(x_1,\, y_1)</math> of the ellipse <math>\tfrac{x^2}{a^2} + \tfrac{y^2}{b^2} = 1</math> has the coordinate equation: <math display="block">\frac{x_1}{a^2}x + \frac{y_1}{b^2}y = 1.</math> A vector [[parametric equation]] of the tangent is: <math display="block">\vec x = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + s \left(\begin{array}{r} -y_1 a^2 \\ x_1 b^2 \end{array}\right) , \quad s \in \R. </math> '''Proof:''' Let <math>(x_1,\, y_1)</math> be a point on an ellipse and <math display="inline">\vec{x} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + s \begin{pmatrix} u \\ v \end{pmatrix}</math> be the equation of any line <math>g</math> containing <math>(x_1,\, y_1)</math>. Inserting the line's equation into the ellipse equation and respecting <math display="inline">\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1</math> yields: <math display="block"> \frac{\left(x_1 + su\right)^2}{a^2} + \frac{\left(y_1 + sv\right)^2}{b^2} = 1\ \quad\Longrightarrow\quad 2s\left(\frac{x_1u}{a^2} + \frac{y_1v}{b^2}\right) + s^2\left(\frac{u^2}{a^2} + \frac{v^2}{b^2}\right) = 0\ .</math> There are then cases: # <math>\frac{x_1}{a^2}u + \frac{y_1}{b^2}v = 0.</math> Then line <math>g</math> and the ellipse have only point <math>(x_1,\, y_1)</math> in common, and <math>g</math> is a tangent. The tangent direction has [[normal (geometry)|perpendicular vector]] <math>\begin{pmatrix} \frac{x_1}{a^2} & \frac{y_1}{b^2} \end{pmatrix}</math>, so the tangent line has equation <math display="inline">\frac{x_1}{a^2}x + \tfrac{y_1}{b^2}y = k</math> for some <math>k</math>. Because <math>(x_1,\, y_1)</math> is on the tangent and the ellipse, one obtains <math>k = 1</math>. # <math>\frac{x_ 1}{a^2}u + \frac{y_1}{b^2}v \ne 0.</math> Then line <math>g</math> has a second point in common with the ellipse, and is a secant. Using (1) one finds that <math>\begin{pmatrix} -y_1 a^2 & x_1 b^2 \end{pmatrix}</math> is a tangent vector at point <math>(x_1,\, y_1)</math>, which proves the vector equation. If <math>(x_1, y_1)</math> and <math>(u, v)</math> are two points of the ellipse such that <math display="inline">\frac{x_1u}{a^2} + \tfrac{y_1v}{b^2} = 0</math>, then the points lie on two ''conjugate diameters'' (see [[#Conjugate diameters|below]]). (If <math>a = b</math>, the ellipse is a circle and "conjugate" means "orthogonal".) === Shifted ellipse === If the standard ellipse is shifted to have center <math>\left(x_\circ,\, y_\circ\right)</math>, its equation is <math display="block">\frac{\left(x - x_\circ\right)^2}{a^2} + \frac{\left(y - y_\circ\right)^2}{b^2} = 1 \ .</math> The axes are still parallel to the ''x''- and ''y''-axes. === General ellipse === {{Main|Matrix representation of conic sections}} [[File:General ellipse.png|thumb|right|upright=1.25|A general ellipse in the plane can be uniquely described as a bivariate quadratic equation of Cartesian coordinates, or using center, semi-major and semi-minor axes, and angle]] In [[analytic geometry]], the ellipse is defined as a [[Quadratic form|quadric]]: the set of points <math>(x,\, y)</math> of the [[Cartesian plane]] that, in non-degenerate cases, satisfy the [[Implicit and explicit functions|implicit]] equation<ref>{{cite book|url=https://books.google.com/books?id=yMdHnyerji8C | title=Precalculus with Limits|last1=Larson|first1=Ron| last2=Hostetler|first2=Robert P. | last3=Falvo|first3=David C.| publisher=Cengage Learning|year=2006 | isbn=978-0-618-66089-6|page=767 | chapter=Chapter 10 | chapter-url=https://books.google.com/books?id=yMdHnyerji8C&pg=PA767}} </ref><ref>{{cite book| url=https://books.google.com/books?id=9HRLAn326zEC | title=Precalculus| last1=Young|first1=Cynthia Y.|author-link=Cynthia Y. Young| publisher=John Wiley and Sons| year=2010| isbn=978-0-471-75684-2|page=831| chapter=Chapter 9| chapter-url=https://books.google.com/books?id=9HRLAn326zEC&pg=PA831}} </ref> <math display="block">Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0</math> provided <math>B^2 - 4AC < 0.</math> To distinguish the [[degenerate conic|degenerate cases]] from the non-degenerate case, let ''β'' be the [[determinant]] <math display="block">\Delta = \begin{vmatrix} A & \frac{1}{2}B & \frac{1}{2}D \\ \frac{1}{2}B & C & \frac{1}{2}E \\ \frac{1}{2}D & \frac{1}{2}E & F \end{vmatrix} = ACF + \tfrac14 BDE - \tfrac14(AE^2 + CD^2 + FB^2). </math> Then the ellipse is a non-degenerate real ellipse if and only if ''Cβ'' < 0. If ''Cβ'' > 0, we have an imaginary ellipse, and if ''β'' = 0, we have a point ellipse.<ref name="Lawrence">Lawrence, J. Dennis, ''A Catalog of Special Plane Curves'', Dover Publ., 1972.</ref>{{rp|p=63}} The general equation's coefficients can be obtained from known semi-major axis <math>a</math>, semi-minor axis <math>b</math>, center coordinates <math>\left(x_\circ,\, y_\circ\right)</math>, and rotation angle <math>\theta</math> (the angle from the positive horizontal axis to the ellipse's major axis) using the formulae: <math display="block">\begin{align} A &= a^2 \sin^2\theta + b^2 \cos^2\theta & B &= 2\left(b^2 - a^2\right) \sin\theta \cos\theta \\[1ex] C &= a^2 \cos^2\theta + b^2 \sin^2\theta & D &= -2A x_\circ - B y_\circ \\[1ex] E &= - B x_\circ - 2C y_\circ & F &= A x_\circ^2 + B x_\circ y_\circ + C y_\circ^2 - a^2 b^2. \end{align}</math> These expressions can be derived from the canonical equation <math display="block">\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1</math> by a Euclidean transformation of the coordinates <math>(X,\, Y)</math>: <math display="block">\begin{align} X &= \left(x - x_\circ\right) \cos\theta + \left(y - y_\circ\right) \sin\theta, \\ Y &= -\left(x - x_\circ\right) \sin\theta + \left(y - y_\circ\right) \cos\theta. \end{align}</math> Conversely, the canonical form parameters can be obtained from the general-form coefficients by the equations:<ref name="mathworld"/> <math display="block">\begin{align} a, b &= \frac{-\sqrt{2 \big(A E^2 + C D^2 - B D E + (B^2 - 4 A C) F\big)\big((A + C) \pm \sqrt{(A - C)^2 + B^2}\big)}}{B^2 - 4 A C}, \\ x_\circ &= \frac{2CD - BE}{B^2 - 4AC}, \\[5mu] y_\circ &= \frac{2AE - BD}{B^2 - 4AC}, \\[5mu] \theta &= \tfrac12 \operatorname{atan2}(-B,\, C-A), \end{align}</math> where {{math|[[atan2]]}} is the 2-argument arctangent function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)