Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptic integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Incomplete elliptic integral of the first kind== The '''incomplete elliptic integral of the first kind''' {{mvar|F}} is defined as <math display="block"> F(\varphi,k) = F\left(\varphi \mid k^2\right) = F(\sin \varphi ; k) = \int_0^\varphi \frac {d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}.</math> This is Legendre's trigonometric form of the elliptic integral; substituting {{math|1=''t'' = sin ''ΞΈ''}} and {{math|1=''x'' = sin ''Ο''}}, one obtains Jacobi's algebraic form: <math display="block"> F(x ; k) = \int_{0}^{x} \frac{dt}{\sqrt{\left(1 - t^2\right)\left(1 - k^2 t^2\right)}}.</math> Equivalently, in terms of the amplitude and modular angle one has: <math display="block"> F(\varphi \setminus \alpha) = F(\varphi, \sin \alpha) = \int_0^\varphi \frac{d\theta}{\sqrt{1-\left(\sin \theta \sin \alpha\right)^2}}.</math> With {{math|1=''x'' = sn(''u'', ''k'')}} one has: <math display="block">F(x;k) = u;</math> demonstrating that this [[Jacobian elliptic function]] is a simple inverse of the incomplete elliptic integral of the first kind. The incomplete elliptic integral of the first kind has following addition theorem{{Citation needed|date=February 2024}}: <math display="block">F\bigl[\arctan(x),k\bigr] + F\bigl[\arctan(y),k\bigr] = F\left[\arctan\left(\frac{x\sqrt{k'^2y^2+1}}{\sqrt{y^2+1}}\right) + \arctan\left(\frac{y\sqrt{k'^2x^2+1}}{\sqrt{x^2+1}}\right),k\right] </math> The elliptic modulus can be transformed that way: <math display="block">F\bigl[\arcsin(x),k\bigr] = \frac{2}{1+\sqrt{1-k^2}}F\left[\arcsin\left(\frac{\left(1+\sqrt{1-k^2}\right)x}{1+\sqrt{1-k^2x^2}}\right),\frac{1-\sqrt{1-k^2}}{1+\sqrt{1-k^2}}\right] </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)