Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptical polarization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Polarization ellipse== At a fixed point in space (or for fixed z), the electric vector <math> \mathbf{E} </math> traces out an ellipse in the x-y plane. The semi-major and semi-minor axes of the ellipse have lengths A and B, respectively, that are given by :<math> A=|\mathbf{E}|\sqrt{\frac{1+\sqrt{1-\sin^2(2\theta)\sin^2\beta}}{2}}</math> and :<math> B=|\mathbf{E}|\sqrt{\frac{1-\sqrt{1-\sin^2(2\theta)\sin^2\beta}}{2}}</math>, where <math>\beta =\alpha_y-\alpha_x</math> with the phases <math>\alpha_x</math> and <math>\alpha_y</math>. The orientation of the ellipse is given by the angle <math>\phi </math> the semi-major axis makes with the x-axis. This angle can be calculated from :<math> \tan2\phi=\tan2\theta\cos\beta</math>. If <math>\beta= 0</math>, the wave is [[linear polarization|linearly polarized]]. The ellipse collapses to a straight line <math>(A=|\mathbf{E}|, B=0</math>) oriented at an angle <math>\phi=\theta</math>. This is the case of superposition of two simple harmonic motions (in phase), one in the x direction with an amplitude <math>|\mathbf{E}| \cos\theta</math>, and the other in the y direction with an amplitude <math>|\mathbf{E}| \sin\theta </math>. When <math>\beta</math> increases from zero, i.e., assumes positive values, the line evolves into an ellipse that is being traced out in the counterclockwise direction (looking in the direction of the propagating wave); this then corresponds to ''left-handed elliptical polarization''; the semi-major axis is now oriented at an angle <math>\phi\neq\theta </math>. Similarly, if <math>\beta</math> becomes negative from zero, the line evolves into an ellipse that is being traced out in the clockwise direction; this corresponds to ''right-handed elliptical polarization''. If <math>\beta=\pm\pi/2</math> and <math>\theta=\pi/4</math>, <math> A=B=|\mathbf{E}|/\sqrt{2}</math>, i.e., the wave is [[circular polarization|circularly polarized]]. When <math>\beta=\pi/2</math>, the wave is left-circularly polarized, and when <math>\beta=-\pi/2</math>, the wave is right-circularly polarized. ===Parameterization=== {{main|Polarization (waves)#Parameterization}} {{anchor|Axial ratio}} Any fixed polarization can be described in terms of the shape and orientation of the polarization ellipse, which is defined by two parameters: axial ratio AR and tilt angle <math>\tau</math>. The axial ratio is the ratio of the lengths of the major and minor axes of the ellipse, and is always greater than or equal to one. Alternatively, polarization can be represented as a point on the surface of the [[Poincaré sphere (optics)|Poincaré sphere]], with <math>2\times \tau</math> as the [[longitude]] and <math>2\times \epsilon</math> as the [[latitude]], where <math>\epsilon=\arccot(\pm AR)</math>. The sign used in the argument of the <math>\arccot</math> depends on the handedness of the polarization. Positive indicates left hand polarization, while negative indicates right hand polarization, as defined by IEEE. For the special case of [[circular polarization]], the axial ratio equals 1 (or 0 dB) and the tilt angle is undefined. For the special case of [[linear polarization]], the axial ratio is infinite.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)