Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler numbers
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Explicit formulas == === In terms of Stirling numbers of the second kind === The following two formulas express the Euler numbers in terms of [[Stirling numbers of the second kind]]:<ref>{{cite journal | first1=Sumit Kumar | last1= Jha | title=A new explicit formula for Bernoulli numbers involving the Euler number | journal=Moscow Journal of Combinatorics and Number Theory | volume=8 | issue=4 | pages=385β387 | year=2019 | url= https://projecteuclid.org/euclid.moscow/1572314455| doi= 10.2140/moscow.2019.8.389 | s2cid= 209973489 }}</ref><ref>{{cite web |url=https://osf.io/smw7h/ |title=A new explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind |last=Jha |first=Sumit Kumar |date= 15 November 2019}}</ref> :<math> E_{n}=2^{2n-1}\sum_{\ell=1}^{n}\frac{(-1)^{\ell}S(n,\ell)}{\ell+1}\left(3\left(\frac{1}{4}\right)^{\overline{\ell\phantom{.}}}-\left(\frac{3}{4}\right)^{\overline{\ell\phantom{.}}}\right), </math> :<math> E_{2n}=-4^{2n}\sum_{\ell=1}^{2n}(-1)^{\ell}\cdot \frac{S(2n,\ell)}{\ell+1}\cdot \left(\frac{3}{4}\right)^{\overline{\ell\phantom{.}}},</math> where <math> S(n,\ell) </math> denotes the [[Stirling numbers of the second kind]], and <math> x^{\overline{\ell\phantom{.}}}=(x)(x+1)\cdots (x+\ell-1) </math> denotes the [[Falling and rising factorials|rising factorial]]. === As a recursion === The Euler numbers can be defined as an recursion: <math>E_{2n}=-\sum_{{k=1}}^{n}\binom{2n}{2k}E_{2(n-k)},</math> or alternatively: <math>1=-\sum_{{k=1}}^{n}\binom{2n}{2k}E_{2k},</math> Both of these recursions can be found by using the fact that. <math>cos(x)sec(x)=1.</math> ===As a double sum=== The following two formulas express the Euler numbers as double sums<ref>{{cite journal | first1=Chun-Fu | last1= Wei | first2=Feng | last2=Qi | title=Several closed expressions for the Euler numbers | journal=Journal of Inequalities and Applications | volume=219 | issue=2015| year=2015 | doi= 10.1186/s13660-015-0738-9 | doi-access=free }} </ref> :<math>E_{2n}=(2 n+1)\sum_{\ell=1}^{2n} (-1)^{\ell}\frac{1}{2^{\ell}(\ell +1)}\binom{2 n}{\ell}\sum _{q=0}^{\ell}\binom{\ell}{q}(2q-\ell)^{2n}, </math> :<math>E_{2n}=\sum_{k=1}^{2n}(-1)^{k} \frac{1}{2^{k}}\sum_{\ell=0}^{2k}(-1)^{\ell } \binom{2k}{\ell}(k-\ell)^{2n}. </math> ===As an iterated sum=== An explicit formula for Euler numbers is:<ref>{{cite web |url=https://oeis.org/A000111/a000111.pdf |archive-url=https://web.archive.org/web/20140409060145/http://oeis.org/A000111/a000111.pdf |archive-date=2014-04-09 |url-status=live |title=An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series |last=Tang |first=Ross |date= 2012-05-11}} </ref> :<math>E_{2n}=i\sum _{k=1}^{2n+1} \sum _{\ell=0}^k \binom{k}{\ell}\frac{(-1)^\ell(k-2\ell)^{2n+1}}{2^k i^k k},</math> where {{mvar|i}} denotes the [[imaginary unit]] with {{math|''i''<sup>2</sup> {{=}} β1}}. ===As a sum over partitions=== The Euler number {{math|''E''<sub>2''n''</sub>}} can be expressed as a sum over the even [[Integer partition|partitions]] of {{math|2''n''}},<ref>{{cite journal | first1=David C. | last1= Vella | title=Explicit Formulas for Bernoulli and Euler Numbers | journal=Integers | volume=8 | issue=1 | pages=A1 | year=2008 | url= http://www.integers-ejcnt.org/vol8.html}}</ref> :<math> E_{2n} = (2n)! \sum_{0 \leq k_1, \ldots, k_n \leq n} \binom K {k_1, \ldots , k_n} \delta_{n,\sum mk_m} \left( -\frac{1}{2!} \right)^{k_1} \left( -\frac{1}{4!} \right)^{k_2} \cdots \left( -\frac{1}{(2n)!} \right)^{k_n} ,</math> as well as a sum over the odd partitions of {{math|2''n'' β 1}},<ref>{{cite arXiv | eprint=1103.1585 | first1= J. | last1=Malenfant | title=Finite, Closed-form Expressions for the Partition Function and for Euler, Bernoulli, and Stirling Numbers| class= math.NT | year= 2011 }}</ref> :<math> E_{2n} = (-1)^{n-1} (2n-1)! \sum_{0 \leq k_1, \ldots, k_n \leq 2n-1} \binom K {k_1, \ldots , k_n} \delta_{2n-1,\sum (2m-1)k_m } \left( -\frac{1}{1!} \right)^{k_1} \left( \frac{1}{3!} \right)^{k_2} \cdots \left( \frac{(-1)^n}{(2n-1)!} \right)^{k_n} , </math> where in both cases {{math|''K'' {{=}} ''k''<sub>1</sub> + Β·Β·Β· + ''k<sub>n</sub>''}} and :<math> \binom K {k_1, \ldots , k_n} \equiv \frac{ K!}{k_1! \cdots k_n!}</math> is a [[multinomial coefficient]]. The [[Kronecker delta]]s in the above formulas restrict the sums over the {{mvar|k}}s to {{math|2''k''<sub>1</sub> + 4''k''<sub>2</sub> + Β·Β·Β· + 2''nk<sub>n</sub>'' {{=}} 2''n''}} and to {{math|''k''<sub>1</sub> + 3''k''<sub>2</sub> + Β·Β·Β· + (2''n'' β 1)''k<sub>n</sub>'' {{=}} 2''n'' β 1}}, respectively. As an example, :<math> \begin{align} E_{10} & = 10! \left( - \frac{1}{10!} + \frac{2}{2!\,8!} + \frac{2}{4!\,6!} - \frac{3}{2!^2\, 6!}- \frac{3}{2!\,4!^2} +\frac{4}{2!^3\, 4!} - \frac{1}{2!^5}\right) \\[6pt] & = 9! \left( - \frac{1}{9!} + \frac{3}{1!^2\,7!} + \frac{6}{1!\,3!\,5!} +\frac{1}{3!^3}- \frac{5}{1!^4\,5!} -\frac{10}{1!^3\,3!^2} + \frac{7}{1!^6\, 3!} - \frac{1}{1!^9}\right) \\[6pt] & = -50\,521. \end{align} </math> ===As a determinant=== {{math|''E''<sub>2''n''</sub>}} is given by the [[determinant]] :<math> \begin{align} E_{2n} &=(-1)^n (2n)!~ \begin{vmatrix} \frac{1}{2!}& 1 &~& ~&~\\ \frac{1}{4!}& \frac{1}{2!} & 1 &~&~\\ \vdots & ~ & \ddots~~ &\ddots~~ & ~\\ \frac{1}{(2n-2)!}& \frac{1}{(2n-4)!}& ~&\frac{1}{2!} & 1\\ \frac{1}{(2n)!}&\frac{1}{(2n-2)!}& \cdots & \frac{1}{4!} & \frac{1}{2!}\end{vmatrix}. \end{align} </math> ===As an integral=== {{math|''E''<sub>2''n''</sub>}} is also given by the following integrals: :<math> \begin{align} (-1)^n E_{2n} & = \int_0^\infty \frac{t^{2n}}{\cosh\frac{\pi t}2}\; dt =\left(\frac2\pi\right)^{2n+1} \int_0^\infty \frac{x^{2n}}{\cosh x}\; dx\\[8pt] &=\left(\frac2\pi\right)^{2n} \int_0^1\log^{2n}\left(\tan \frac{\pi t}{4} \right)\,dt =\left(\frac2\pi\right)^{2n+1}\int_0^{\pi/2} \log^{2n}\left(\tan \frac{x}{2} \right)\,dx\\[8pt] &= \frac{2^{2n+3}}{\pi^{2n+2}} \int_0^{\pi/2} x \log^{2n} (\tan x)\,dx = \left(\frac2\pi\right)^{2n+2} \int_0^\pi \frac{x}{2} \log^{2n} \left(\tan \frac{x}{2} \right)\,dx.\end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)