Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Excision theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Statement === If <math>U\subseteq A \subseteq X</math> are as above, we say that <math>U</math> can be '''excised''' if the inclusion map of the pair <math>(X \setminus U,A \setminus U )</math> into <math>(X, A)</math> induces an isomorphism on the relative homologies: {{center|<math>H_n(X \setminus U,A \setminus U) \cong H_n(X,A)</math>}} The theorem states that if the [[Closure (topology)|closure]] of <math>U</math> is contained in the [[Interior (topology)|interior]] of <math>A</math>, then <math>U</math> can be excised. Often, subspaces that do not satisfy this containment criterion still can be excised—it suffices to be able to find a [[deformation retract]] of the subspaces onto subspaces that do satisfy it.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)