Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exponential hierarchy
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==EXPH== EXPH is the union of the classes <math>\Sigma^{\mathsf{EXP}}_k</math>, where <math>\Sigma^{\mathsf{EXP}}_k=\mathsf{NEXP}^{\Sigma^\mathsf{P}_{k-1}}</math> (languages computable in nondeterministic time <math>2^{n^c}</math> for some constant ''c'' with a <math>\Sigma^\mathsf{P}_{k-1}</math> oracle), <math>\Sigma^{\mathsf{EXP}}_0 = \mathsf{EXP}</math>, and again: :<math>\Pi^{\mathsf{EXP}}_k=\mathsf{coNEXP}^{\Sigma^\mathsf{P}_{k-1}}, \Delta^{\mathsf{EXP}}_k=\mathsf{EXP}^{\Sigma^\mathsf{P}_{k-1}}.</math> A language ''L'' is in <math>\Sigma^{\mathsf{EXP}}_k</math> if and only if it can be written as :<math>x\in L\iff\exists y_1 \forall y_2 \dots Qy_k R(x,y_1,\ldots,y_k),</math> where <math>R(x,y_1,\ldots,y_k)</math> is computable in time <math>2^{|x|^c}</math> for some ''c'', which again implicitly bounds the length of ''y<sub>i</sub>''. Equivalently, EXPH is the class of languages computable in time <math>2^{n^c}</math> on an alternating Turing machine with constantly many alternations.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)