Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Extreme point
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Characterizations=== The '''{{visible anchor|midpoint}}'''{{sfn|Narici|Beckenstein|2011|pp=275-339}} of two elements <math>x</math> and <math>y</math> in a vector space is the vector <math>\tfrac{1}{2}(x+y).</math> For any elements <math>x</math> and <math>y</math> in a vector space, the set <math>[x, y] = \{t x + (1-t) y : 0 \leq t \leq 1\}</math> is called the '''{{visible anchor|closed line segment}}''' or '''{{visible anchor|closed interval}}''' between <math>x</math> and <math>y.</math> The '''{{visible anchor|open line segment}}''' or '''{{visible anchor|open interval}}''' between <math>x</math> and <math>y</math> is <math>(x, x) = \varnothing</math> when <math>x = y</math> while it is <math>(x, y) = \{t x + (1-t) y : 0 < t < 1\}</math> when <math>x \neq y.</math>{{sfn|Narici|Beckenstein|2011|pp=275-339}} The points <math>x</math> and <math>y</math> are called the '''{{visible anchor|endpoints}}''' of these interval. An interval is said to be a '''{{visible anchor|non−degenerate interval}}''' or a '''{{visible anchor|proper interval}}''' if its endpoints are distinct. The '''{{visible anchor|midpoint of an interval}}''' is the midpoint of its endpoints. The closed interval <math>[x, y]</math> is equal to the [[convex hull]] of <math>(x, y)</math> if (and only if) <math>x \neq y.</math> So if <math>K</math> is convex and <math>x, y \in K,</math> then <math>[x, y] \subseteq K.</math> If <math>K</math> is a nonempty subset of <math>X</math> and <math>F</math> is a nonempty subset of <math>K,</math> then <math>F</math> is called a '''{{visible anchor|face}}'''{{sfn|Narici|Beckenstein|2011|pp=275-339}} of <math>K</math> if whenever a point <math>p \in F</math> lies between two points of <math>K,</math> then those two points necessarily belong to <math>F.</math> {{Math theorem|name=Theorem{{sfn|Narici|Beckenstein|2011|pp=275-339}}|math_statement= Let <math>K</math> be a non-empty convex subset of a vector space <math>X</math> and let <math>p \in K.</math> Then the following statements are equivalent: <ol> <li><math>p</math> is an extreme point of <math>K.</math></li> <li><math>K \setminus \{p\}</math> is convex.</li> <li><math>p</math> is not the midpoint of a non-degenerate line segment contained in <math>K.</math></li> <li>for any <math>x, y \in K,</math> if <math>p \in [x, y]</math> then <math>x = p \text{ or } y = p.</math></li> <li>if <math>x \in X</math> is such that both <math>p + x</math> and <math>p - x</math> belong to <math>K,</math> then <math>x = 0.</math></li> <li><math>\{p\}</math> is a face of <math>K.</math></li> </ol> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)