Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Factor analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Definition=== The model attempts to explain a set of <math>p</math> observations in each of <math>n</math> individuals with a set of <math>k</math> ''common factors'' (<math>f_{i,j}</math>) where there are fewer factors per unit than observations per unit (<math>k<p</math>). Each individual has <math>k</math> of their own common factors, and these are related to the observations via the factor ''loading matrix'' (<math>L \in \mathbb{R}^{p \times k}</math>), for a single observation, according to : <math>x_{i,m} - \mu_{i} = l_{i,1} f_{1,m} + \dots + l_{i,k} f_{k,m} + \varepsilon_{i,m} </math> where * <math>x_{i,m}</math> is the value of the <math>i</math>th observation of the <math>m</math>th individual, * <math>\mu_i</math> is the observation mean for the <math>i</math>th observation, * <math>l_{i,j}</math> is the loading for the <math>i</math>th observation of the <math>j</math>th factor, * <math>f_{j,m}</math> is the value of the <math>j</math>th factor of the <math>m</math>th individual, and * <math>\varepsilon_{i,m} </math> is the <math>(i,m)</math>th ''unobserved stochastic error term'' with mean zero and finite variance. In matrix notation : <math>X - \Mu = L F + \varepsilon</math> where observation matrix <math>X \in \mathbb{R}^{p \times n}</math>, loading matrix <math>L \in \mathbb{R}^{p \times k}</math>, factor matrix <math>F \in \mathbb{R}^{k \times n}</math>, error term matrix <math>\varepsilon \in \mathbb{R}^{p \times n}</math> and mean matrix <math>\Mu \in \mathbb{R}^{p \times n}</math> whereby the <math>(i,m)</math>th element is simply <math>\Mu_{i,m}=\mu_i</math>. Also we will impose the following assumptions on <math>F</math>: # <math>F</math> and <math>\varepsilon</math> are independent. # <math>\mathrm{E}(F) = 0</math>; where <math>\mathrm E</math> is [[Multivariate random variable#Expected value|Expectation]] # <math>\mathrm{Cov}(F)=I</math> where <math>\mathrm{Cov}</math> is the [[covariance matrix]], to make sure that the factors are uncorrelated, and <math>I</math> is the [[identity matrix]]. Suppose <math>\mathrm{Cov}(X - \Mu)=\Sigma</math>. Then : <math>\Sigma=\mathrm{Cov}(X - \Mu)=\mathrm{Cov}(LF + \varepsilon),\,</math> and therefore, from conditions 1 and 2 imposed on <math>F</math> above, <math>E[LF]=LE[F]=0</math> and <math>Cov(LF+\epsilon)=Cov(LF)+Cov(\epsilon)</math>, giving : <math>\Sigma = L \mathrm{Cov}(F) L^T + \mathrm{Cov}(\varepsilon),\,</math> or, setting <math>\Psi:=\mathrm{Cov}(\varepsilon)</math>, : <math>\Sigma = LL^T + \Psi.\,</math> For any [[orthogonal matrix]] <math>Q</math>, if we set <math>L^\prime=\ LQ</math> and <math>F^\prime=Q^T F</math>, the criteria for being factors and factor loadings still hold. Hence a set of factors and factor loadings is unique only up to an [[orthogonal transformation]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)