Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Feigenbaum constants
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The first constant== The '''first Feigenbaum constant''' or simply '''Feigenbaum constant'''<ref name=":0">{{Cite web |last=Weisstein |first=Eric W. |title=Feigenbaum Constant |url=https://mathworld.wolfram.com/FeigenbaumConstant.html |access-date=2024-10-06 |website=mathworld.wolfram.com |language=en}}</ref> {{mvar|Ξ΄}} is the limiting ratio of each bifurcation interval to the next between every [[period-doubling bifurcation|period doubling]], of a one-[[parameter]] map :<math>x_{i+1} = f(x_i),</math> where {{math|''f'' (''x'')}} is a function parameterized by the bifurcation parameter {{mvar|'''a'''}}. It is given by the [[limit of a sequence|limit]]:<ref>{{cite book |title=Non-Linear Ordinary Differential Equations: Introduction for Scientists and Engineers |edition=4th |first1=D. W. |last1=Jordan |first2=P. |last2=Smith |publisher=Oxford University Press |year=2007 |isbn=978-0-19-920825-8 }}</ref> :<math>\delta = \lim_{n\to\infty} \frac{a_{n-1} - a_{n-2}}{a_n - a_{n-1}}</math> where {{mvar|a<sub>n</sub>}} are discrete values of {{mvar|'''a'''}} at the {{mvar|n}}th period doubling. This gives its numerical value {{OEIS|id=A006890}}: <math>\delta = 4.669\,201\,609\,102\,990\,671\,853\,203\,820\,466\ldots</math> * A simple [[rational number|rational]] approximation is {{sfrac|621|133}}, which is correct to 5 significant values (when rounding). For more precision use {{sfrac|1228|263}}, which is correct to 7 significant values. * It is approximately equal to {{math|{{sfrac|10|Ο β 1}}}}, with an error of 0.0047 %. ===Illustration=== ====Non-linear maps==== To see how this number arises, consider the [[real number|real]] one-parameter map :<math>f(x) = a-x^2.</math> Here {{mvar|a}} is the bifurcation parameter, {{mvar|x}} is the variable. The values of {{mvar|a}} for which the period doubles (e.g. the largest value for {{mvar|a}} with no {{nowrap|period-2}} orbit, or the largest {{mvar|a}} with no {{nowrap|period-4}} orbit), are {{math|''a''<sub>1</sub>}}, {{math|''a''<sub>2</sub>}} etc. These are tabulated below:<ref>Alligood, [https://books.google.com/books?id=i633SeDqq-oC&pg=PA503 p. 503].</ref> :{| class="wikitable" |- ! {{mvar|n}} ! Period ! Bifurcation parameter ({{mvar|a<sub>n</sub>}}) ! Ratio {{math|{{sfrac|''a''{{sub|''n''β1}} β ''a''{{sub|''n''β2}}|''a''{{sub|''n''}} β ''a''{{sub|''n''β1}}}}}} |- | 1 || 2 || 0.75 || β |- | 2 || 4 || 1.25 || β |- | 3 || 8 || {{val|1.3680989}} || 4.2337 |- | 4 || 16 || {{val|1.3940462}} || 4.5515 |- | 5 || 32 || {{val|1.3996312}} || 4.6458 |- | 6 || 64 || {{val|1.4008286}} || 4.6639 |- | 7 || 128 || {{val|1.4010853}} || 4.6682 |- | 8 || 256 || {{val|1.4011402}} || 4.6689 |- |} The ratio in the last column converges to the first Feigenbaum constant. The same number arises for the [[logistic map]] :<math>f(x) = ax(1-x)</math> with real parameter {{mvar|a}} and variable {{mvar|x}}. Tabulating the bifurcation values again:<ref>Alligood, [https://books.google.com/books?id=i633SeDqq-oC&pg=PA504 p. 504].</ref> :{| class="wikitable" |- ! {{mvar|n}} ! Period ! Bifurcation parameter ({{mvar|a<sub>n</sub>}}) ! Ratio {{math|{{sfrac|''a''{{sub|''n''β1}} β ''a''{{sub|''n''β2}}|''a''{{sub|''n''}} β ''a''{{sub|''n''β1}}}}}} |- | 1 || 2 || 3 || β |- | 2 || 4 || {{val|3.4494897}} || β |- | 3 || 8 || {{val|3.5440903}} || 4.7514 |- | 4 || 16 || {{val|3.5644073}} || 4.6562 |- | 5 || 32 || {{val|3.5687594}} || 4.6683 |- | 6 || 64 || {{val|3.5696916}} || 4.6686 |- | 7 || 128 || {{val|3.5698913}} || 4.6680 |- | 8 || 256 || {{val|3.5699340}} || 4.6768 |- |} ====Fractals==== [[Image:Mandelbrot zoom.gif|right|thumb|201px|[[Self-similarity]] in the [[Mandelbrot set]] shown by zooming in on a round feature while panning in the negative-{{mvar|x}} direction. The display center pans from (β1, 0) to (β1.31, 0) while the view magnifies from 0.5 Γ 0.5 to 0.12 Γ 0.12 to approximate the Feigenbaum ratio.]] In the case of the [[Mandelbrot set]] for [[complex quadratic polynomial]] :<math>f(z) = z^2 + c</math> the Feigenbaum constant is the limiting ratio between the diameters of successive circles on the [[real line|real axis]] in the [[complex plane]] (see animation on the right). :{| class="wikitable" |- ! {{mvar|n}} ! Period = {{math|2<sup>''n''</sup>}} ! Bifurcation parameter ({{mvar|c<sub>n</sub>}}) ! Ratio <math>= \dfrac{c_{n-1} - c_{n-2}}{c_n - c_{n-1}}</math> |- | 1 || 2 || {{val|-0.75}} || β |- | 2 || 4 || {{val|-1.25}} || β |- | 3 || 8 || {{val|-1.3680989}} || 4.2337 |- | 4 || 16 || {{val|-1.3940462}} || 4.5515 |- | 5 || 32 || {{val|-1.3996312}} || 4.6459 |- | 6 || 64 || {{val|-1.4008287}} || 4.6639 |- | 7 || 128 || {{val|-1.4010853}} || 4.6668 |- | 8 || 256 || {{val|-1.4011402}} || 4.6740 |- |9 ||512 ||{{val|-1.401151982029}} ||4.6596 |- |10 ||1024 ||{{val|-1.401154502237}} ||4.6750 |- |... ||... ||... ||... |- |{{math|β}} || || {{val|-1.4011551890}}... || |} Bifurcation parameter is a root point of period-{{math|2<sup>''n''</sup>}} component. This series converges to '''the Feigenbaum point''' {{mvar|c}} = β1.401155...... The ratio in the last column converges to the first Feigenbaum constant. [[File:Feigenbaum Julia set.png|thumb|right|[[Julia set]] for the '''Feigenbaum point''']] Other maps also reproduce this ratio; in this sense the Feigenbaum constant in [[bifurcation theory]] is analogous to [[Pi (number)|{{pi}}]] in [[geometry]] and {{math|[[e (mathematical constant)|''e'']]}} in [[calculus]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)