Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Formation evaluation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Coring=== '''Coring''' is the process of retrieving '''cylindrical rock samples (cores)''' from the subsurface during '''drilling operations'''. These samples provide '''direct physical evidence''' of the reservoir rock and are used to study its '''petrophysical, geological, and mechanical properties'''. One way to get more detailed samples of a formation is by coring. Two techniques commonly used at present. The first is the "whole core", a cylinder of rock, usually about 3" to 4" in diameter and up to {{convert|50|to|60|ft|m}} long. It is cut with a "core barrel", a hollow pipe tipped with a ring-shaped diamond chip-studded bit that can cut a plug and bring it to the surface. Often the plug breaks while drilling, usually in shales or fractures and the core barrel jams, slowly grinding the rocks in front of it to powder. This signals the driller to give up on getting a full-length core and to pull up the pipe. Taking a full core is an expensive operation that usually stops or slows drilling for at least the better part of a day. A full core can be invaluable for later reservoir evaluation. Once a section of well has been drilled, there is, of course, no way to core it without drilling another well. Another, cheaper, technique for obtaining samples of the formation is "[[Sidewall Coring]]". One type of sidewall cores is percussion cores. In this method, a steel cylinder—a coring gun—has hollow-point steel bullets mounted along its sides and moored to the gun by short steel cables. The coring gun is lowered to the bottom of the interval of interest and the bullets are fired individually as the gun is pulled up the hole. The mooring cables ideally pull the hollow bullets and the enclosed plug of formation loose and the gun carries them to the surface. Advantages of this technique are low cost and the ability to sample the formation after it has been drilled. Disadvantages are possible non-recovery because of lost or misfired bullets and a slight uncertainty about the sample depth. Sidewall cores are often shot "on the run" without stopping at each core point because of the danger of differential sticking. Most service company personnel are skilled enough to minimize this problem, but it can be significant if depth accuracy is important. A second method of sidewall coring is rotary sidewall cores. In this method, a circular-saw assembly is lowered to the zone of interest on a wireline, and the core is sawed out. Dozens of cores may be taken this way in one run. This method is roughly 20 times as expensive as percussion cores, but yields a much better sample. A serious problem with cores is the change they undergo as they are brought to the surface. It might seem that cuttings and cores are very direct samples but the problem is whether the formation at depth will produce oil or gas. Sidewall cores are deformed and compacted and fractured by the bullet impact. Most full cores from any significant depth expand and fracture as they are brought to the surface and removed from the core barrel. Both types of core can be invaded or even flushed by mud, making the evaluation of formation fluids difficult. The formation analyst has to remember that all tools give indirect data.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)