Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Formula for primes
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Formula based on a system of Diophantine equations== Because the set of primes is a [[computably enumerable set]], by [[Matiyasevich's theorem]], it can be obtained from a system of [[Diophantine equation]]s. {{Harvtxt|Jones|Sato|Wada|Wiens|1976}} found an explicit set of 14 Diophantine equations in 26 variables, such that a given number ''k'' + 2 is prime [[if and only if]] that system has a solution in nonnegative integers:<ref>{{citation | first1=James P. | last1=Jones | first2=Daihachiro | last2=Sato | first3=Hideo | last3=Wada | first4=Douglas | last4=Wiens | author4-link=Douglas Wiens | url=http://mathdl.maa.org/mathDL/?pa=content&sa=viewDocument&nodeId=2967&pf=1 | year=1976 | title=Diophantine representation of the set of prime numbers | journal=[[American Mathematical Monthly]] | volume=83 | pages=449β464 | doi=10.2307/2318339 | jstor=2318339 | issue=6 | publisher=Mathematical Association of America | url-status=dead | archive-url=https://web.archive.org/web/20120224013618/http://mathdl.maa.org/mathDL/?pa=content&sa=viewDocument&nodeId=2967&pf=1 | archive-date=2012-02-24 }}.</ref> : <math>\alpha_0= wz + h + j - q = 0</math> : <math>\alpha_1 = (gk + 2g + k + 1)(h + j) + h - z = 0</math> : <math>\alpha_2= 16(k + 1)^3(k + 2)(n + 1)^2 + 1 - f^2 = 0</math> : <math>\alpha_3= 2n + p + q + z - e = 0</math> : <math>\alpha_4= e^3(e + 2)(a + 1)^2 + 1 - o^2 = 0</math> : <math>\alpha_5=(a^2 - 1)y^2 + 1 - x^2 = 0</math> : <math>\alpha_6= 16r^2y^4(a^2 - 1) + 1 - u^2 = 0</math> : <math>\alpha_7= n + \ell + v - y = 0</math> : <math>\alpha_8= (a^2 - 1)\ell^2 + 1 - m^2 = 0</math> : <math>\alpha_9= ai + k + 1 - \ell - i = 0</math> : <math>\alpha_{10}= ((a + u^2(u^2 - a))^2 - 1)(n + 4dy)^2 + 1 - (x + cu)^2 = 0</math> : <math>\alpha_{11}= p + \ell(a - n - 1) + b(2an + 2a - n^2 - 2n - 2) - m= 0 </math> : <math>\alpha_{12}= q + y(a - p - 1) + s(2ap + 2a - p^2 - 2p - 2) - x = 0</math> :<math>\alpha_{13}= z + p\ell(a - p) + t(2ap - p^2 - 1) - pm = 0</math> The 14 equations <math>\alpha_0, \dots, \alpha_{13}</math> can be used to produce a prime-generating polynomial inequality in 26 variables: :<math> (k+2)(1-\alpha_0^2-\alpha_1^2-\cdots-\alpha_{13}^2) > 0.</math> That is, : <math> \begin{align} & (k+2) (1 - {} \\[6pt] & [wz + h + j - q]^2 - {} \\[6pt] & [(gk + 2g + k + 1)(h + j) + h - z]^2 - {} \\[6pt] & [16(k + 1)^3(k + 2)(n + 1)^2 + 1 - f^2]^2 - {} \\[6pt] & [2n + p + q + z - e]^2 - {} \\[6pt] & [e^3(e + 2)(a + 1)^2 + 1 - o^2]^2 - {} \\[6pt] & [(a^2 - 1)y^2 + 1 - x^2]^2 - {} \\[6pt] & [16r^2y^4(a^2 - 1) + 1 - u^2]^2 - {} \\[6pt] & [n + \ell + v - y]^2 - {} \\[6pt] & [(a^2 - 1)\ell^2 + 1 - m^2]^2 - {} \\[6pt] & [ai + k + 1 - \ell - i]^2 - {} \\[6pt] & [((a + u^2(u^2 - a))^2 - 1)(n + 4dy)^2 + 1 - (x + cu)^2]^2 - {} \\[6pt] & [p + \ell(a - n - 1) + b(2an + 2a - n^2 - 2n - 2) - m]^2 - {} \\[6pt] & [q + y(a - p - 1) + s(2ap + 2a - p^2 - 2p - 2) - x]^2 - {} \\[6pt] & [z + p\ell(a - p) + t(2ap - p^2 - 1) - pm]^2) \\[6pt] & > 0 \end{align} </math> is a polynomial inequality in 26 variables, and the set of prime numbers is identical to the set of positive values taken on by the left-hand side as the variables ''a'', ''b'', β¦, ''z'' range over the nonnegative integers. A general theorem of [[Yuri Matiyasevich|Matiyasevich]] says that if a set is defined by a system of Diophantine equations, it can also be defined by a system of Diophantine equations in only 9 variables.<ref>{{citation | last = Matiyasevich | first = Yuri V. | author-link = Yuri Matiyasevich | year=1999 | chapter = Formulas for Prime Numbers | chapter-url=https://books.google.com/books?id=oLKlk5o6WroC&pg=PA13 | editor1-first=Serge | editor1-last = Tabachnikov | editor-link1=Sergei Tabachnikov| title = Kvant Selecta: Algebra and Analysis | volume = II | publisher = [[American Mathematical Society]] | isbn = 978-0-8218-1915-9 | pages=13β24}}.</ref> Hence, there is a prime-generating polynomial inequality as above with only 10 variables. However, its degree is large (in the order of 10<sup>45</sup>). On the other hand, there also exists such a set of equations of degree only 4, but in 58 variables.<ref>{{citation | doi=10.2307/2273588 | first=James P. | last=Jones | year=1982 | title=Universal diophantine equation | journal=Journal of Symbolic Logic | volume=47 | issue=3 | pages=549β571| jstor=2273588 | s2cid=11148823 }}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)