Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fourier inversion theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Inverse Fourier transform as an integral=== The most common statement of the Fourier inversion theorem is to state the inverse transform as an integral. For any integrable function <math>g</math> and all <math>x \in \mathbb R</math> set :<math>\mathcal{F}^{-1}g(x):=\int_{\mathbb{R}} e^{2\pi ix\cdot\xi} \, g(\xi)\,d\xi.</math> Then for all <math>x \in \mathbb R</math> we have :<math>\mathcal{F}^{-1}(\mathcal{F}f)(x)=f(x).</math> {{collapse top|title=Proof}} Given <math>f(y)</math> and <math>\mathcal{F}f (\xi) = \int_{\mathbb{R}^n} e^{-2\pi i y\cdot\xi} f(y)\,dy</math>, the proof uses the following facts: # If <math>x \in \mathbb R^n</math> and <math>g(\xi) = e^{2 \pi \mathrm{i}x \cdot \xi} \psi(\xi)</math>, then <math display="block">(\mathcal{F}g)(y) = (\mathcal{F}\psi)(y - x).</math> # If <math>\varepsilon \in \mathbb R</math> and <math>\psi(\xi) = \varphi(\varepsilon\xi)</math>, then <math display="block">(\mathcal{F}\psi)(y) = (\mathcal{F}\varphi)(y/\varepsilon)/|\varepsilon|^n.</math> # For <math>f, g \in L^1(\mathbb R^n)</math>, [[Fubini's theorem]] implies <math display="block">\textstyle\int g(\xi) \cdot (\mathcal{F}f)(\xi)\,d\xi = \int(\mathcal{F}g)(y) \cdot f(y)\,dy.</math> # Define <math>\varphi(\xi) = e^{-\pi \vert \xi \vert^2}</math> such that <math display="block">(\mathcal{F}\varphi)(y) = \varphi(y).</math> # Define <math>\varphi_\varepsilon(y) = \varphi(y/\varepsilon)/\varepsilon^n</math>; an [[nascent delta function|approximation to the identity]]. That is, <math display="block">\lim_{\varepsilon \to 0} (\varphi_\varepsilon \ast f)(x) = f(x),</math> converges pointwise for any continuous <math>f \in L^1(\mathbb R^n)</math> and point <math>x \in \mathbb R^n</math>. Since, by assumption, <math>\mathcal{F}f\in L^1(\mathbb{R}^n)</math>, it follows by the [[dominated convergence theorem]] that <math display="block">\int_{\mathbb{R}^n} e^{2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi = \lim_{\varepsilon \to 0}\int_{\mathbb{R}^n} e^{-\pi\varepsilon^2|\xi|^2 + 2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi.</math> Define <math display="block">g_x(\xi) = e^{-\pi\varepsilon^2\vert \xi \vert^2 + 2 \pi \mathrm{i} x \cdot \xi}.</math> Applying facts 1, 2 and 4, repeatedly for multiple integrals if necessary, we obtain <math display="block">(\mathcal{F}g_x)(y) = \frac{1}{\varepsilon^n}e^{-\frac{\pi}{\varepsilon^2}|x - y|^2}=\varphi_\varepsilon(x-y).</math> Using fact 3 on <math>f</math> and <math>g_x</math>, for each <math>x\in\mathbb R^n</math>, we have <math display="block">\int_{\mathbb{R}^n} e^{-\pi\varepsilon^2|\xi|^2 + 2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi = \int_{\mathbb{R}^n} \frac{1}{\varepsilon^n}e^{-\frac{\pi}{\varepsilon^2}|x - y|^2} f(y)\,dy = (\varphi_\varepsilon * f)(x),</math> the [[convolution]] of <math>f</math> with an approximate identity. But since <math>f \in L^1(\mathbb R^n)</math>, fact 5 says that <math display="block">\lim_{\varepsilon\to 0}(\varphi_{\varepsilon} * f) (x) = f(x).</math> Putting together the above we have shown that <math display="block">\int_{\mathbb{R}^n} e^{2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi = f(x). \qquad\square</math> {{collapse bottom}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)