Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fractional Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== Note: some authors write the transform in terms of the "order {{mvar|a}}" instead of the "angle {{mvar|α}}", in which case the {{mvar|α}} is usually {{mvar|a}} times {{math|''π''/2}}. Although these two forms are equivalent, one must be careful about which definition the author uses. For any [[real number|real]] {{mvar|α}}, the {{mvar|α}}-angle fractional Fourier transform of a function ƒ is denoted by <math>\mathcal{F}_\alpha (u)</math> and defined by:<ref>Formally, this formula is only valid when the input function is in a sufficiently nice space (such as [[Lp space|L¹]] or [[Schwartz space]]), and is defined via a density argument in the general case.</ref><ref>{{Cite thesis |last= Missbauer |first= Andreas |title= Gabor Frames and the Fractional Fourier Transform |date= 2012 |type= MSc |publisher= [[University of Vienna]] |url=https://www.univie.ac.at/nuhag-php/bibtex/open_files/13586_Missbauer_Diplom_final.pdf |access-date=2018-11-03 |archive-url=https://web.archive.org/web/20181103131426/https://www.univie.ac.at/nuhag-php/bibtex/open_files/13586_Missbauer_Diplom_final.pdf |archive-date=2018-11-03 |url-status=dead }}</ref><ref>If {{mvar|α}} is an integer multiple of {{pi}}, then the [[cotangent]] and [[cosecant]] functions above diverge. This apparent divergence can be handled by taking the [[limit of a function|limit]] in the sense of [[tempered distributions]], and leads to a [[Dirac delta function]] in the integrand. This approach is consistent with the intuition that, since <math>\mathcal{F}^2(f)=f(-t)~, ~~\mathcal{F}_{\alpha} ~ (f) </math> must be simply {{math|''f''(''t'')}} or {{math|''f''(−''t'')}} for {{mvar|α}} an [[Even and odd numbers|even or odd]] multiple of {{mvar|π}} respectively.</ref> {{Equation box 1 |indent =:: |equation = <math>\mathcal{F}_\alpha[f](u) = \sqrt{1-i\cot(\alpha)} e^{i \pi \cot(\alpha) u^2} \int_{-\infty}^\infty e^{-2\pi i\left(\csc(\alpha) u x - \frac{\cot(\alpha)}{2} x^2\right)} f(x)\, \mathrm{d}x </math> |cellpadding= 6 |border |border colour = #0073CF |bgcolor=#F9FFF7}} For {{math|''α'' {{=}} ''π''/2}}, this becomes precisely the definition of the continuous Fourier transform, and for {{math|''α'' {{=}} −''π''/2}} it is the definition of the inverse continuous Fourier transform. The FRFT argument {{mvar|u}} is neither a spatial one {{mvar|x}} nor a frequency {{mvar|ξ}}. We will see why it can be interpreted as linear combination of both coordinates {{math|(''x'',''ξ'')}}. When we want to distinguish the {{mvar|α}}-angular fractional domain, we will let <math>x_a</math> denote the argument of <math>\mathcal{F}_\alpha</math>. '''Remark:''' with the angular frequency ω convention instead of the frequency one, the FRFT formula is the [[Mehler kernel]], <math display=block>\mathcal{F}_\alpha(f)(\omega) = \sqrt{\frac{1-i\cot(\alpha)}{2\pi}} e^{i \cot(\alpha) \omega^2/2} \int_{-\infty}^\infty e^{-i\csc(\alpha) \omega t + i \cot(\alpha) t^2/2} f(t)\, dt~. </math> ===Properties=== The {{math|''α''}}-th order fractional Fourier transform operator, <math>\mathcal{F}_\alpha</math>, has the properties: ====Additivity==== For any real angles {{math|''α, β''}}, <math display=block>\mathcal{F}_{\alpha+\beta} = \mathcal{F}_\alpha \circ \mathcal{F}_\beta = \mathcal{F}_\beta \circ \mathcal{F}_\alpha.</math> ====Linearity==== <math display=block>\mathcal{F}_\alpha \left [\sum\nolimits_k b_kf_k(u) \right ]=\sum\nolimits_k b_k\mathcal{F}_\alpha \left [f_k(u) \right ]</math> ====Integer Orders==== If {{math|''α''}} is an integer multiple of <math>\pi / 2</math>, then: <math display=block>\mathcal{F}_\alpha = \mathcal{F}_{k\pi/2} = \mathcal{F}^k = (\mathcal{F})^k</math> Moreover, it has following relation <math display=block>\begin{align} \mathcal{F}^2 &= \mathcal{P} && \mathcal{P}[f(u)]=f(-u)\\ \mathcal{F}^3 &= \mathcal{F}^{-1} = (\mathcal{F})^{-1} \\ \mathcal{F}^4 &= \mathcal{F}^0 = \mathcal{I} \\ \mathcal{F}^i &= \mathcal{F}^j && i \equiv j \mod 4 \end{align}</math> ====Inverse==== <math display=block>(\mathcal{F}_\alpha)^{-1}=\mathcal{F}_{-\alpha}</math> ====Commutativity==== <math display=block>\mathcal{F}_{\alpha_1}\mathcal{F}_{\alpha_2}=\mathcal{F}_{\alpha_2}\mathcal{F}_{\alpha_1}</math> ====Associativity==== <math display=block> \left (\mathcal{F}_{\alpha_1}\mathcal{F}_{\alpha_2} \right )\mathcal{F}_{\alpha_3} = \mathcal{F}_{\alpha_1} \left (\mathcal{F}_{\alpha_2}\mathcal{F}_{\alpha_3} \right )</math> ====Unitarity==== <math display=block>\int f(t)g^*(t)dt=\int f_\alpha(u)g_\alpha^*(u)du</math> ====Time Reversal==== <math display=block>\mathcal{F}_\alpha\mathcal{P}=\mathcal{P}\mathcal{F}_\alpha</math> <math display=block>\mathcal{F}_\alpha[f(-u)]=f_\alpha(-u)</math> ====Transform of a shifted function==== {{see also|Generalizations of Pauli matrices#Construction: The clock and shift matrices}} Define the shift and the phase shift operators as follows: <math display=block>\begin{align} \mathcal{SH}(u_0)[f(u)] &= f(u+u_0) \\ \mathcal{PH}(v_0)[f(u)] &= e^{j2\pi v_0u}f(u) \end{align}</math> Then <math display=block>\begin{align} \mathcal{F}_\alpha \mathcal{SH}(u_0) &= e^{j\pi u_0^2 \sin\alpha \cos\alpha} \mathcal{PH}(u_0\sin\alpha) \mathcal{SH}(u_0\cos\alpha) \mathcal{F}_\alpha, \end{align}</math> that is, <math display=block>\begin{align} \mathcal{F}_\alpha [f(u+u_0)] &=e^{j\pi u_0^2 \sin\alpha \cos\alpha} e^{j2\pi uu_0 \sin\alpha} f_\alpha (u+u_0 \cos\alpha) \end{align}</math> ====Transform of a scaled function==== Define the scaling and chirp multiplication operators as follows: <math display=block>\begin{align} M(M)[f(u)] &= |M|^{-\frac{1}{2}} f \left (\tfrac{u}{M} \right) \\ Q(q)[f(u)] &= e^{-j\pi qu^2 } f(u) \end{align}</math> Then, <math display=block>\begin{align} \mathcal{F}_\alpha M(M) &= Q \left (-\cot \left (\frac{1-\cos^2 \alpha'}{\cos^2 \alpha}\alpha \right ) \right)\times M \left (\frac{\sin \alpha}{M\sin \alpha'} \right )\mathcal{F}_{\alpha'} \\ [6pt] \mathcal{F}_\alpha \left [|M|^{-\frac{1}{2}} f \left (\tfrac{u}{M} \right) \right ] &= \sqrt{\frac{1-j \cot\alpha}{1-jM^2 \cot\alpha}} e^{j\pi u^2\cot \left (\frac{1-\cos^2 \alpha'}{\cos^2 \alpha}\alpha \right )} \times f_a \left (\frac{Mu \sin\alpha'}{\sin\alpha} \right ) \end{align}</math> Notice that the fractional Fourier transform of <math>f(u/M)</math> cannot be expressed as a scaled version of <math>f_\alpha (u)</math>. Rather, the fractional Fourier transform of <math>f(u/M)</math> turns out to be a scaled and chirp modulated version of <math>f_{\alpha'}(u)</math> where <math>\alpha\neq\alpha'</math> is a different order.<ref>An elementary recipe, using the contangent function, and its (multi-valued) inverse, for <math>\alpha'</math> in terms of <math>\alpha</math> and <math>M</math> exists.</ref> ===Fractional kernel=== The FRFT is an [[integral transform]] <math display=block>\mathcal{F}_\alpha f (u) = \int K_\alpha (u, x) f(x)\, \mathrm{d}x</math> where the α-angle kernel is <math display=block>K_\alpha (u, x) = \begin{cases}\sqrt{1-i\cot(\alpha)} \exp \left(i \pi (\cot(\alpha)(x^2+ u^2) -2 \csc(\alpha) u x) \right) & \mbox{if } \alpha \mbox{ is not a multiple of }\pi, \\ \delta (u - x) & \mbox{if } \alpha \mbox{ is a multiple of } 2\pi, \\ \delta (u + x) & \mbox{if } \alpha+\pi \mbox{ is a multiple of } 2\pi, \\ \end{cases}</math> Here again the special cases are consistent with the limit behavior when {{mvar|α}} approaches a multiple of {{mvar|π}}. The FRFT has the same properties as its kernels : * symmetry: <math>K_\alpha~(u, u')=K_\alpha ~(u', u)</math> * inverse: <math>K_\alpha^{-1} (u, u') = K_\alpha^* (u, u') = K_{-\alpha} (u', u) </math> * additivity: <math>K_{\alpha+\beta} (u,u') = \int K_\alpha (u, u'') K_\beta (u'', u')\,\mathrm{d}u''.</math> ===Related transforms=== There also exist related fractional generalizations of similar transforms such as the [[discrete Fourier transform]]. * The '''discrete fractional Fourier transform''' is defined by [[Zeev zalevsky|Zeev Zalevsky]].{{sfn|Candan|Kutay|Ozaktas|2000}}{{sfn|Ozaktas|Zalevsky|Kutay|2001|loc=Chapter 6}} A quantum algorithm to implement a version of the discrete fractional Fourier transform in sub-polynomial time is described by Somma.<ref>{{cite journal |last= Somma |first= Rolando D. |date= 2016 |title= Quantum simulations of one dimensional quantum systems |journal= Quantum Information and Computation |volume= 16 |pages= 1125–1168 |arxiv= 1503.06319v2}}</ref> * The [[Fractional wavelet transform]] (FRWT) is a generalization of the classical [[wavelet transform]] in the fractional Fourier transform domains.<ref>{{cite journal |last1= Shi |first1= Jun |last2= Zhang |first2= NaiTong |last3= Liu |first3= Xiaoping |date= June 2012 |title= A novel fractional wavelet transform and its applications |journal= Sci. China Inf. Sci. |volume= 55 |number= 6 |pages= 1270–1279 |doi= 10.1007/s11432-011-4320-x|s2cid= 3772011 }}</ref> * The [[chirplet transform]] for a related generalization of the [[wavelet transform]]. ===Generalizations=== The Fourier transform is essentially [[bosonic]]; it works because it is consistent with the superposition principle and related interference patterns. There is also a [[fermionic]] Fourier transform.<ref name = "xyz">{{cite journal |last= De Bie |first= Hendrik |date= 1 September 2008 |title= Fourier transform and related integral transforms in superspace |journal= Journal of Mathematical Analysis and Applications |volume= 345 |issue= 1 |pages= 147–164 |doi= 10.1016/j.jmaa.2008.03.047 |arxiv= 0805.1918 |bibcode= 2008JMAA..345..147D |s2cid= 17066592 }}</ref> These have been generalized into a [[supersymmetric]] FRFT, and a supersymmetric [[Radon transform]].<ref name = "xyz" /> There is also a fractional Radon transform, a [[time–frequency analysis|symplectic]] FRFT, and a symplectic [[wavelet transform]].<ref>{{cite journal |surname1= Fan |given1= Hong-yi |surname2= Hu |given2= Li-yun |title= Optical transformation from chirplet to fractional Fourier transformation kernel |date= 2009 |journal= Journal of Modern Optics |volume= 56 |issue= 11 |pages= 1227–1229 |doi= 10.1080/09500340903033690 |arxiv= 0902.1800 |bibcode= 2009JMOp...56.1227F |s2cid= 118463188 }}</ref> Because [[quantum circuit]]s are based on [[unitary operation]]s, they are useful for computing [[integral transform]]s as the latter are unitary operators on a [[function space]]. A quantum circuit has been designed which implements the FRFT.<ref>{{cite journal |last1= Klappenecker |first1= Andreas |last2= Roetteler |first2= Martin |date= January 2002 |title= Engineering Functional Quantum Algorithms |journal= Physical Review A |volume= 67 |issue= 1 |pages= 010302 |doi= 10.1103/PhysRevA.67.010302 |arxiv= quant-ph/0208130 |s2cid= 14501861 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)