Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Functional analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Hilbert spaces=== [[Hilbert space]]s can be completely classified: there is a unique Hilbert space [[up to]] [[isomorphism]] for every [[cardinal number|cardinality]] of the [[orthonormal basis]].<ref>{{Cite book| last=Riesz|first=Frigyes| url=https://www.worldcat.org/oclc/21228994|title=Functional analysis|date=1990|publisher=Dover Publications| others = Béla Szőkefalvi-Nagy, Leo F. Boron|isbn=0-486-66289-6|edition=Dover |location=New York|oclc=21228994| pages = 195–199}}</ref> Finite-dimensional Hilbert spaces are fully understood in [[linear algebra]], and infinite-dimensional [[Separable space|separable]] Hilbert spaces are isomorphic to [[Sequence space#ℓp spaces|<math>\ell^{\,2}(\aleph_0)\,</math>]]. Separability being important for applications, functional analysis of Hilbert spaces consequently mostly deals with this space. One of the open problems in functional analysis is to prove that every bounded linear operator on a Hilbert space has a proper [[invariant subspace]]. Many special cases of this [[invariant subspace problem]] have already been proven.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)