Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Functional integration
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== Most functional integrals are actually infinite, but often the limit of the [[quotient]] of two related functional integrals can still be finite. The functional integrals that can be evaluated exactly usually start with the following [[Gaussian integral]]: :<math> \frac{\displaystyle\int \exp\left\lbrace-\frac{1}{2} \int_{\mathbb{R}}\left[\int_{\mathbb{R}} f(x) K(x;y) f(y)\,dy + J(x) f(x)\right]dx\right\rbrace \mathcal{D}[f]} {\displaystyle\int \exp\left\lbrace-\frac{1}{2} \int_{\mathbb{R}^2} f(x) K(x;y) f(y) \,dx\,dy\right\rbrace \mathcal{D}[f]} = \exp\left\lbrace\frac{1}{2}\int_{\mathbb{R}^2} J(x) \cdot K^{-1}(x;y) \cdot J(y) \,dx\,dy\right\rbrace\,, </math> in which <math> K(x;y)=K(y;x) </math>. By functionally differentiating this with respect to ''J''(''x'') and then setting to 0 this becomes an exponential multiplied by a monomial in ''f''. To see this, let's use the following notation: <math> G[f,J]=-\frac{1}{2} \int_{\mathbb{R}}\left[\int_{\mathbb{R}} f(x) K(x;y) f(y)\,dy + J(x) f(x)\right]dx\, \quad,\quad W[J]=\int \exp\lbrace G[f,J]\rbrace\mathcal{D}[f]\;. </math> With this notation the first equation can be written as: <math> \dfrac{W[J]}{W[0]}=\exp\left\lbrace\frac{1}{2}\int_{\mathbb{R}^2} J(x) K^{-1}(x;y) J(y) \,dx\,dy\right\rbrace. </math> Now, taking functional derivatives to the definition of <math> W[J] </math> and then evaluating in <math> J=0 </math>, one obtains: <math> \dfrac{\delta }{\delta J(a)}W[J]\Bigg|_{J=0}=\int f(a)\exp\lbrace G[f,0]\rbrace\mathcal{D}[f]\;, </math> <math> \dfrac{\delta^2 W[J]}{\delta J(a)\delta J(b)}\Bigg|_{J=0}=\int f(a)f(b)\exp\lbrace G[f,0]\rbrace\mathcal{D}[f]\;, </math> <math> \qquad\qquad\qquad\qquad\vdots </math> which is the result anticipated. More over, by using the first equation one arrives to the useful result: :<math> \dfrac{\delta^2}{\delta J(a)\delta J(b)}\left(\dfrac{W[J]}{W[0]}\right)\Bigg|_{J=0}= K^{-1}(a; b)\;; </math> Putting these results together and backing to the original notation we have: <math> \frac{\displaystyle\int f(a)f(b)\exp\left\lbrace-\frac{1}{2} \int_{\mathbb{R}^2} f(x) K(x;y) f(y)\, dx\,dy\right\rbrace \mathcal{D}[f]} {\displaystyle\int \exp\left\lbrace-\frac{1}{2} \int_{\mathbb{R}^2} f(x) K(x;y) f(y) \,dx\,dy\right\rbrace \mathcal{D}[f]} = K^{-1}(a;b)\,. </math> Another useful integral is the functional [[delta function]]: :<math> \int \exp\left\lbrace \int_{\mathbb{R}} f(x) g(x)dx\right\rbrace \mathcal{D}[f] = \delta[g] = \prod_x\delta\big(g(x)\big), </math> which is useful to specify constraints. Functional integrals can also be done over [[Grassmann number|Grassmann-valued]] functions <math>\psi(x)</math>, where <math>\psi(x) \psi(y) = -\psi(y) \psi(x)</math>, which is useful in quantum electrodynamics for calculations involving [[fermions]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)